A good λ estimate for multilinear singular integral operators with variable Calderón-Zygmund kernel
Kragujevac Journal of Mathematics, Tome 27 (2005), p. 19 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A GOOD l ESTIMATE FOR MULTILINEAR SINGULAR INTEGRAL OPERATORS WITH VARIABLE CALDERÓN-ZYGMUND KERNEL Liu Lanzhe College of Mathematics Changsha University of Science and Technology Changsha 410077, P.R. of China (e-mail: lanzheliu@263.net)(Received November 14, 2004) Abstract. In this paper, a good l estimate for the multilinear operators associated to the singular integral operators with variable Calderón-Zygmund kernel is obtained. Under this result, we get the (Lp, Lq)-boundedness of the multilinear operators.
Keywords: multilinear singular integral operator, variable Calderon-Zygmund kernel, Lipschitz function, good lambda estimate
@article{KJM_2005_27_a2,
     author = {Liu Lanzhe},
     title = {A good \ensuremath{\lambda} estimate for multilinear singular integral operators with variable {Calder\'on-Zygmund} kernel},
     journal = {Kragujevac Journal of Mathematics},
     pages = {19 },
     publisher = {mathdoc},
     volume = {27},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2005_27_a2/}
}
TY  - JOUR
AU  - Liu Lanzhe
TI  - A good λ estimate for multilinear singular integral operators with variable Calderón-Zygmund kernel
JO  - Kragujevac Journal of Mathematics
PY  - 2005
SP  - 19 
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2005_27_a2/
LA  - en
ID  - KJM_2005_27_a2
ER  - 
%0 Journal Article
%A Liu Lanzhe
%T A good λ estimate for multilinear singular integral operators with variable Calderón-Zygmund kernel
%J Kragujevac Journal of Mathematics
%D 2005
%P 19 
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2005_27_a2/
%G en
%F KJM_2005_27_a2
Liu Lanzhe. A good λ estimate for multilinear singular integral operators with variable Calderón-Zygmund kernel. Kragujevac Journal of Mathematics, Tome 27 (2005), p. 19 . http://geodesic.mathdoc.fr/item/KJM_2005_27_a2/