On the B-scrolls in the 3-dimensional Lorentzian space
Kragujevac Journal of Mathematics, Tome 27 (2005) no. 1

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

ON THE B-SCROLLS IN THE 3-DIMENSIONAL LORENTZIAN SPACE L3Handan Balgetir, Mehmet Bektas, Mahmut Ergüt Department of Mathematics, Firat University,23119 Elaz g, TÜRKIYE (e-mail: hbalgetir@firat.edu.tr, mbektas@firat.edu.tr, mergut@firat.edu.tr) (Received June 25, 2004) Abstract. The purpose of this paper is introduce nondegenerate ruled surfaces in L3 which are said to be B-scrolls. We defined the central point, the curve of striction, pseudo-orthogonal trajectory in a B-scroll and obtained some theorems related to these structures in the 3-dimensional Lorentzian space L3. We gave also the distribution parameter of a B-scroll and some theorems in L3.
@article{KJM_2005_27_1_a10,
     author = {Handan Balgetir and Mehmet Bektas and Mahmut Ergut},
     title = {On the {B-scrolls} in the 3-dimensional {Lorentzian} space},
     journal = {Kragujevac Journal of Mathematics},
     pages = {163 - 174},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/KJM_2005_27_1_a10/}
}
TY  - JOUR
AU  - Handan Balgetir
AU  - Mehmet Bektas
AU  - Mahmut Ergut
TI  - On the B-scrolls in the 3-dimensional Lorentzian space
JO  - Kragujevac Journal of Mathematics
PY  - 2005
SP  - 163 
EP  -  174
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2005_27_1_a10/
ID  - KJM_2005_27_1_a10
ER  - 
%0 Journal Article
%A Handan Balgetir
%A Mehmet Bektas
%A Mahmut Ergut
%T On the B-scrolls in the 3-dimensional Lorentzian space
%J Kragujevac Journal of Mathematics
%D 2005
%P 163 - 174
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2005_27_1_a10/
%F KJM_2005_27_1_a10
Handan Balgetir; Mehmet Bektas; Mahmut Ergut. On the B-scrolls in the 3-dimensional Lorentzian space. Kragujevac Journal of Mathematics, Tome 27 (2005) no. 1. http://geodesic.mathdoc.fr/item/KJM_2005_27_1_a10/