Univariate Shepard-Lagrange interpolation
Kragujevac Journal of Mathematics, Tome 24 (2002), p. 85 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Kragujevac J. Math. 24 (2002) 85-94. UNIVARIATE SHEPARD-LAGRANGE INTERPOLATIONRadu T. TrimbitasFaculty of Mathematics and Computer Science, "Babe s-Bolyai" University, Cluj-Napoca, Romania (Received July 15, 2002) Abstract. In this paper we study the univariate Shepard-Lagrange interpolation operator where (yn,k) are the interpolation nodes and (Lmf)(x;yn,k) is the Lagrange interpolation polynomial with nodes yn,k,yn,k+1,�,yn,k+m. Then we give error estimations for various distribution of interpolation nodes.
Classification : 41A05 65D05
Keywords: Shepard-Lagrange interpolation operator, Lagrange interpolation, interpolation error, orthogonal polynomials
@article{KJM_2002_24_a9,
     author = {Radu T. Trimbitas},
     title = {Univariate {Shepard-Lagrange} interpolation},
     journal = {Kragujevac Journal of Mathematics},
     pages = {85 },
     publisher = {mathdoc},
     volume = {24},
     year = {2002},
     zbl = {1028.41004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KJM_2002_24_a9/}
}
TY  - JOUR
AU  - Radu T. Trimbitas
TI  - Univariate Shepard-Lagrange interpolation
JO  - Kragujevac Journal of Mathematics
PY  - 2002
SP  - 85 
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2002_24_a9/
LA  - en
ID  - KJM_2002_24_a9
ER  - 
%0 Journal Article
%A Radu T. Trimbitas
%T Univariate Shepard-Lagrange interpolation
%J Kragujevac Journal of Mathematics
%D 2002
%P 85 
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2002_24_a9/
%G en
%F KJM_2002_24_a9
Radu T. Trimbitas. Univariate Shepard-Lagrange interpolation. Kragujevac Journal of Mathematics, Tome 24 (2002), p. 85 . http://geodesic.mathdoc.fr/item/KJM_2002_24_a9/