The path is the tree with smallest greatest Laplacian eigenvalue
Kragujevac Journal of Mathematics, Tome 24 (2002), p. 67
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Kragujevac J. Math. 24 (2002) 67-70.
THE PATH IS THE TREE WITH SMALLEST GREATEST LAPLACIAN
EIGENVALUEMiroslav Petrovic and Ivan Gutman Faculty of Science, P. O. Box 60, 34000 Kragujevac,
Yugoslavia
(Received August 23, 2002)
Abstract. It is shown
that among all trees with a fixed number of vertices the path has
the smallest value of the greatest Laplacian eigenvalue.
Keywords:
Laplacian spectrum (of graph), gratest Laplacian eigenvalue, extremal graphs, trees
@article{KJM_2002_24_a6,
author = {Miroslav Petrovi\'c and Ivan Gutman},
title = {The path is the tree with smallest greatest {Laplacian} eigenvalue},
journal = {Kragujevac Journal of Mathematics},
pages = {67 },
publisher = {mathdoc},
volume = {24},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KJM_2002_24_a6/}
}
Miroslav Petrović; Ivan Gutman. The path is the tree with smallest greatest Laplacian eigenvalue. Kragujevac Journal of Mathematics, Tome 24 (2002), p. 67 . http://geodesic.mathdoc.fr/item/KJM_2002_24_a6/