Univariate Shepard-Lagrange interpolation
Kragujevac Journal of Mathematics, Tome 24 (2002) no. 1.

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Kragujevac J. Math. 24 (2002) 85-94. UNIVARIATE SHEPARD-LAGRANGE INTERPOLATIONRadu T. TrimbitasFaculty of Mathematics and Computer Science, "Babe s-Bolyai" University, Cluj-Napoca, Romania (Received July 15, 2002) Abstract. In this paper we study the univariate Shepard-Lagrange interpolation operator where (yn,k) are the interpolation nodes and (Lmf)(x;yn,k) is the Lagrange interpolation polynomial with nodes yn,k,yn,k+1,Ľ,yn,k+m. Then we give error estimations for various distribution of interpolation nodes.
@article{KJM_2002_24_1_a9,
     author = {Radu T. Trimbitas},
     title = {Univariate {Shepard-Lagrange} interpolation},
     journal = {Kragujevac Journal of Mathematics},
     pages = {85 - 94},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2002},
     zbl = {1028.41004},
     url = {http://geodesic.mathdoc.fr/item/KJM_2002_24_1_a9/}
}
TY  - JOUR
AU  - Radu T. Trimbitas
TI  - Univariate Shepard-Lagrange interpolation
JO  - Kragujevac Journal of Mathematics
PY  - 2002
SP  - 85 
EP  -  94
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KJM_2002_24_1_a9/
ID  - KJM_2002_24_1_a9
ER  - 
%0 Journal Article
%A Radu T. Trimbitas
%T Univariate Shepard-Lagrange interpolation
%J Kragujevac Journal of Mathematics
%D 2002
%P 85 - 94
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KJM_2002_24_1_a9/
%F KJM_2002_24_1_a9
Radu T. Trimbitas. Univariate Shepard-Lagrange interpolation. Kragujevac Journal of Mathematics, Tome 24 (2002) no. 1. http://geodesic.mathdoc.fr/item/KJM_2002_24_1_a9/