The identical equation for multiplicative functions established by R. Vaidyanathaswamy in the case of Dirichlet convolution in 1931 has been generalized to multiplicativity preserving -convolutions satisfying certain conditions (cf. [7]) which can be called as Lehmer-Narkiewicz convolutions for some reasons. In this paper we prove the converse.
Dans le cadre de la convolution de Dirichlet des fonctions arithmétiques, R. Vaidyanathaswamy a obtenu en 1931 une formule de calcul de valable pour toute fonction multiplicative et tout couple d’entiers positifs et . Dans [7], cette formule a été généralisée aux -convolutions appelées convolutions de Lehmer-Narkiewicz, qui, entre autres, conservent la multiplicativité. Dans cet article, nous démontrons la réciproque.
@article{JTNB_2002__14_2_561_0,
author = {Nicolas, Jean-Louis and Sitaramaiah, Varanasi},
title = {On a class of $\psi $-convolutions characterized by the identical equation},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {561--583},
year = {2002},
publisher = {Universit\'e Bordeaux I},
volume = {14},
number = {2},
mrnumber = {2040694},
zbl = {1071.11007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JTNB_2002__14_2_561_0/}
}
TY - JOUR AU - Nicolas, Jean-Louis AU - Sitaramaiah, Varanasi TI - On a class of $\psi $-convolutions characterized by the identical equation JO - Journal de théorie des nombres de Bordeaux PY - 2002 SP - 561 EP - 583 VL - 14 IS - 2 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_2002__14_2_561_0/ LA - en ID - JTNB_2002__14_2_561_0 ER -
%0 Journal Article %A Nicolas, Jean-Louis %A Sitaramaiah, Varanasi %T On a class of $\psi $-convolutions characterized by the identical equation %J Journal de théorie des nombres de Bordeaux %D 2002 %P 561-583 %V 14 %N 2 %I Université Bordeaux I %U http://geodesic.mathdoc.fr/item/JTNB_2002__14_2_561_0/ %G en %F JTNB_2002__14_2_561_0
Nicolas, Jean-Louis; Sitaramaiah, Varanasi. On a class of $\psi $-convolutions characterized by the identical equation. Journal de théorie des nombres de Bordeaux, Tome 14 (2002) no. 2, pp. 561-583. http://geodesic.mathdoc.fr/item/JTNB_2002__14_2_561_0/