Diophantine approximation on algebraic varieties
Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 2, pp. 439-502.

Voir la notice de l'article provenant de la source Numdam

We present an overview of recent advances in diophantine approximation. Beginning with Roth's theorem, we discuss the Mordell conjecture and then pass on to recent higher dimensional results due to Faltings-Wustholz and to Faltings respectively.

Nous donnons un aperçu de progrès récents en théorie de l'approximation diophantienne. Le point de départ étant le théorème de Roth, nous nous intéressons d'abord à la conjecture de Mordell, puis ensuite à des résultats analogues en dimension supérieure, résultats dûs à Faltings-Wustholz et à Faltings.

@article{JTNB_1999__11_2_439_0,
     author = {Nakamaye, Michael},
     title = {Diophantine approximation on algebraic varieties},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {439--502},
     publisher = {Universit\'e Bordeaux I},
     volume = {11},
     number = {2},
     year = {1999},
     mrnumber = {1745889},
     zbl = {0991.11044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JTNB_1999__11_2_439_0/}
}
TY  - JOUR
AU  - Nakamaye, Michael
TI  - Diophantine approximation on algebraic varieties
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1999
SP  - 439
EP  - 502
VL  - 11
IS  - 2
PB  - Université Bordeaux I
UR  - http://geodesic.mathdoc.fr/item/JTNB_1999__11_2_439_0/
LA  - en
ID  - JTNB_1999__11_2_439_0
ER  - 
%0 Journal Article
%A Nakamaye, Michael
%T Diophantine approximation on algebraic varieties
%J Journal de théorie des nombres de Bordeaux
%D 1999
%P 439-502
%V 11
%N 2
%I Université Bordeaux I
%U http://geodesic.mathdoc.fr/item/JTNB_1999__11_2_439_0/
%G en
%F JTNB_1999__11_2_439_0
Nakamaye, Michael. Diophantine approximation on algebraic varieties. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 2, pp. 439-502. http://geodesic.mathdoc.fr/item/JTNB_1999__11_2_439_0/

[B1] E. Bombieri, On the Thue-Siegel-Dyson theorem. Acta Math. 148 (1982), 255-296. | Zbl | MR

[B2] E. Bombieri, The Mordell Conjecture revisited. Ann. Sc. Norm. Sup. Pisa, Cl. Sci., IV, 17 (1991), 615-640. | Zbl | MR | mathdoc-id

[D] F.J. Dyson, The approximation to algebraic numbers by rationals, Acta Math. 9 (1947), 225-240. | Zbl | MR

[EE] B. Edixhoven & J.-H. Evertse editors, Diophantine Approximation and Abelian Varieties. Springer Lecture Notes 1566 (1993). | Zbl | MR

[EV] H. Esnault & E. Viehweg, Dyson's Lemma for polynomials in several variables (and the Theorem of Roth). Inv. Math. 78 (1984), 445-490. | Zbl | MR

[F1] G. Faltings, Diophantine Approximation on Abelian Varieties. Annals of Math. 133 (1991), 549-576. | Zbl | MR

[F2] G. Faltings, The general case of S. Lang's conjecture. in: Christante and Messing (eds.), Barsotti symposium in algebraic geometry, Academic Press, (1994), 175-182. | Zbl | MR

[FW1] G. Faltings & G. Wüstholz, editors, Rational Points. Vieweg, (1984). | Zbl | MR

[FW2] G. Faltings & G. Wüstholz, Diophantine approximations on projective spaces. Inv. math. 116 (1994), 109-138. | Zbl | MR

[H] M. Hindry, Sur les Conjectures de Mordell et Lang. Astérisque, 209 (1992), 39-56. | Zbl | MR | mathdoc-id

[L1] S. Lang, Fundamentals of Diophantine Geometry. Springer Verlag, (1983). | Zbl | MR

[L2] S. Lang (Ed.), Number Theory III: Diophantine Geometry. Springer Verlag, (1991). | Zbl | MR

[M] D. Mumford, A Remark on Mordell's Conjecture. American Journal of Math. 87, No. 4 (1965), 1007-1016. | Zbl | MR

[N1] M. Nakamaye, Dyson's Lemma and a Theorem of Esnault and Viehweg. Inv. Math. 121 (1995), 355-377. | Zbl | MR

[N2] M. Nakamaye, Dyson's Lemma with Moving Parts. Mathematische Annalen, 310 (1998), 161-168. | Zbl | MR

[N3] M. Nakamaye, Intersection Theory and Diophantine Approximation. to appear, Journal of Algebraic Geometry. | Zbl | MR

[S1] W. Schmidt, Diophantine Approximation, Springer Lecture Notes 785 (1980). | Zbl | MR

[S2] W. Schmidt, Diophantine Approximations and Diophantine Equations. Springer Lecture Notes 1467 (1991). | Zbl | MR

[SE] J.-P. Serre, Lectures on the Mordell-Weil Theorem. Vieweg, (1990). | Zbl

[Vi] C. Viola, On Dyson's lemma. Ann. Sc. Norm. Super. Pisa, 12 (1985), 105-135. | Zbl | MR | mathdoc-id

[V1] P. Vojta, Dyson's lemma for products of two curves of arbitrary genus. Inv. Math. 98 (1989), 107-113. | Zbl | MR

[V2] P. Vojta, Siegel's theorem in the compact case. Annals of Math. 133 (1991), 509-548. | Zbl | MR

[V3] P. Vojta, A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing. Journal AMS, 4 (1992), 763-804. | Zbl | MR

[V4] P. Vojta, Some applications of arithmetic algebraic geometry to diophantine approximations. Proceedings of the CIME Conference, nento, (1991), LNM 1553, Springer, ((1993)). | Zbl | MR

[V5] P. Vojta, Integral points on subvarieties of semi-abelian varieties, I. Inv. Math. 126 (1996), 133-181. | Zbl | MR