Voir la notice de l'article provenant de la source Numdam
Under the Generalized Riemann Hypothesis, it is proved that for any there is depending on only such that every even integer is a sum of two odd primes and powers of .
On démontre que sous GRH et pour , tout entier pair assez grand est somme de deux nombres premiers impairs et de puissances de .
@article{JTNB_1999__11_1_133_0, author = {Liu, Jianya and Liu, Ming-Chit and Wang, Tianze}, title = {On the almost {Goldbach} problem of {Linnik}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {133--147}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {1}, year = {1999}, mrnumber = {1730436}, zbl = {0979.11051}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_1999__11_1_133_0/} }
TY - JOUR AU - Liu, Jianya AU - Liu, Ming-Chit AU - Wang, Tianze TI - On the almost Goldbach problem of Linnik JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 133 EP - 147 VL - 11 IS - 1 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_1999__11_1_133_0/ LA - en ID - JTNB_1999__11_1_133_0 ER -
%0 Journal Article %A Liu, Jianya %A Liu, Ming-Chit %A Wang, Tianze %T On the almost Goldbach problem of Linnik %J Journal de théorie des nombres de Bordeaux %D 1999 %P 133-147 %V 11 %N 1 %I Université Bordeaux I %U http://geodesic.mathdoc.fr/item/JTNB_1999__11_1_133_0/ %G en %F JTNB_1999__11_1_133_0
Liu, Jianya; Liu, Ming-Chit; Wang, Tianze. On the almost Goldbach problem of Linnik. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 133-147. http://geodesic.mathdoc.fr/item/JTNB_1999__11_1_133_0/
[C] On Goldbach's problem and the sieve methods. Sci. Sin., 21 (1978), 701-739. | Zbl | MR
,[D] Multiplicative Number Theory. 2nd ed., Springer, 1980. | Zbl | MR
,[G] Primes and powers of 2. Invent. Math. 29(1975), 125-142. | Zbl | MR
,[HL] Some problems of "patitio numerorum" V: A further contribution to the study of Goldbach's problem. Proc. London Math. Soc. (2) 22 (1923), 45-56. | JFM
and ,[HR] Sieve Methods, Academic Press, 1974. | Zbl | MR
and ,[KPP] A note on the exceptional set for Goldbach's problem in short intervals. Mh. Math. 116 (1993), 275-282; corrigendum 119 (1995), 215-216.
, and ,[L1] Prime numbers and powers of two. Trudy Mat. Inst. Steklov 38 (1951), 151-169. | Zbl | MR
,[L2] Addition of prime numbers and powers of one and the same number. Mat. Sb.(N. S.) 32 (1953), 3-60. | Zbl | MR
,[LLW1] The number of powers of 2 in a representation of large even integers (I). Sci. China Ser. A 41 (1998), 386-398. | Zbl | MR
, , and ,[LLW2] The number of powers of 2 in a representation of large even integers (II). Sci. China Ser. A. 41 (1998), 1255-1271. | Zbl | MR
, , and ,[LP] A pair correlation hypothesis and the exceptional set in Goldbach's problem. Mathematika 43 (1996), 349-361. | Zbl | MR
and ,[P] Primzahlverteilung. Springer, 1957. | Zbl | MR
,[R] Über einige Sätze der additiven Zahlentheorie. Math. Ann. 109 (1934), 668-678. | Zbl | MR | JFM
,[RS] Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64-94. | Zbl | MR
and ,[Vi] On an "almost binary" problem. Izv. Akad. Nauk. SSSR Ser. Mat. 20 (1956), 713-750. | Zbl | MR
,