Voir la notice de l'article provenant de la source Numdam
Let denote the set of real numbers whose base- digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution. We show that the set is closed under multiplication by rational numbers, but not closed under addition.
Soit l’ensemble des réels dont le développement en base contient une queue qui est l’image d’un point fixe d’une substitution primitive par un morphisme de lettres. Nous démontrons que l’ensemble est stable par multiplication par les rationnels, mais non stable par addition.
@article{JTNB_1998__10_2_315_0, author = {Ketkar, Pallavi and Zamboni, Luca Q.}, title = {Primitive substitutive numbers are closed under rational multiplication}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {315--320}, publisher = {Universit\'e Bordeaux I}, volume = {10}, number = {2}, year = {1998}, mrnumber = {1828248}, zbl = {0930.11008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_1998__10_2_315_0/} }
TY - JOUR AU - Ketkar, Pallavi AU - Zamboni, Luca Q. TI - Primitive substitutive numbers are closed under rational multiplication JO - Journal de théorie des nombres de Bordeaux PY - 1998 SP - 315 EP - 320 VL - 10 IS - 2 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_1998__10_2_315_0/ LA - en ID - JTNB_1998__10_2_315_0 ER -
%0 Journal Article %A Ketkar, Pallavi %A Zamboni, Luca Q. %T Primitive substitutive numbers are closed under rational multiplication %J Journal de théorie des nombres de Bordeaux %D 1998 %P 315-320 %V 10 %N 2 %I Université Bordeaux I %U http://geodesic.mathdoc.fr/item/JTNB_1998__10_2_315_0/ %G en %F JTNB_1998__10_2_315_0
Ketkar, Pallavi; Zamboni, Luca Q. Primitive substitutive numbers are closed under rational multiplication. Journal de théorie des nombres de Bordeaux, Tome 10 (1998) no. 2, pp. 315-320. http://geodesic.mathdoc.fr/item/JTNB_1998__10_2_315_0/