Voir la notice de l'article provenant de la source Numdam
The rational solutions with as denominators powers of to the elliptic diophantine equation are determined. An idea of Yuri Bilu is applied, which avoids Thue and Thue-Mahler equations, and deduces four-term (-) unit equations with special properties, that are solved by linear forms in real and -adic logarithms.
On détermine les solutions rationnelles de l’équation diophantienne dont les dénominateurs sont des puissances de . On applique une idée de Yuri Bilu, qui évite le recours à des équations de Thue et de Thue-Mahler, et qui permet d’obtenir des équations aux (-) unités à quatre termes dotées de propriétés spéciales, que l’on résout par la théorie des formes linéaires en logarithmes réels et -adiques.
@article{JTNB_1997__9_2_281_0, author = {de Weger, Benjamin M. M.}, title = {$S$-integral solutions to a {Weierstrass} equation}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {281--301}, publisher = {Universit\'e Bordeaux I}, volume = {9}, number = {2}, year = {1997}, mrnumber = {1617399}, zbl = {0898.11009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_1997__9_2_281_0/} }
TY - JOUR AU - de Weger, Benjamin M. M. TI - $S$-integral solutions to a Weierstrass equation JO - Journal de théorie des nombres de Bordeaux PY - 1997 SP - 281 EP - 301 VL - 9 IS - 2 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_1997__9_2_281_0/ LA - en ID - JTNB_1997__9_2_281_0 ER -
de Weger, Benjamin M. M. $S$-integral solutions to a Weierstrass equation. Journal de théorie des nombres de Bordeaux, Tome 9 (1997) no. 2, pp. 281-301. http://geodesic.mathdoc.fr/item/JTNB_1997__9_2_281_0/
[B] Solving superelliptic Diophantine equations by the method of Gelfond-Baker ", Preprint 94-09, Mathématiques Stochastiques, Univ. Bordeaux 2 [1994].
, "[BH] Solving superelliptic Diophantine equations by Baker's method", Compos. Math., to appear. | Zbl
AND , "[BW] Logarithmic forms and group varieties ", J. reine angew. Math. 442 [1993], 19-62. | Zbl | MR
AND , "[D] Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. de France, Num.62 [1995]. | Zbl | MR | mathdoc-id
,[GPZ1] Computing integral points on elliptic curves", Acta Arith. 68 [1994], 171-192. | Zbl | MR
, AND , "[GPZ2] Computing S-integral points on elliptic curves", in: H. COHEN (ED.), Algorithmic Number Theory, Proceedings ANTS-II, Lecture Notes in Computer Science VOl. 1122, Springer-Verlag, Berlin [1996], pp. 157-171. | Zbl | MR
, AND , "[RU] Approximation diophantienne de logarithmes elliptiques p-adiques", J. Number Th. 57 [1996], 133-169. | Zbl | MR
AND , "[S] S-integral points on elliptic curves", Math. Proc. Cambridge Phil. Soc. 116 [1994], 391-399. | Zbl | MR
, "[ST] Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms", Acta Arith. 67 [1994], 177-196. | Zbl | MR
AND , "[SW1] On a quartic diophantine equation", Proc. Edinburgh Math. Soc. 39 [1996], 97-115. | Zbl | MR
AND , "[T] Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations", Acta Arith. 75 [1996], 165-190. | Zbl | MR | EuDML
, "[TW1] On the practical solution of the Thue equation", J. Number Th. 31 [1989], 99-132. | Zbl | MR
AND , "[TW2] How to explicitly solve a Thue-Mahler equation", Compos. Math. 84 [1992], 223-288. | mathdoc-id | Zbl | MR | EuDML
AND , "[Y] Linear forms in p-adic logarithms III", Compos. Math. 91 [1994], 241-276. | mathdoc-id | Zbl | MR | EuDML
, "