Limit theorems for the Matsumoto zeta-function
Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 1, pp. 143-158.

Voir la notice de l'article provenant de la source Numdam

In this paper two weighted functional limit theorems for the function introduced by K. Matsumoto are proved.

On démontre deux théorèmes limites fonctionnels pondérés pour la fonction introduite par K. Matsumoto.

@article{JTNB_1996__8_1_143_0,
     author = {Laurin\v{c}ikas, Antanas},
     title = {Limit theorems for the {Matsumoto} zeta-function},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {143--158},
     publisher = {Universit\'e Bordeaux I},
     volume = {8},
     number = {1},
     year = {1996},
     mrnumber = {1399951},
     zbl = {0859.11053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JTNB_1996__8_1_143_0/}
}
TY  - JOUR
AU  - Laurinčikas, Antanas
TI  - Limit theorems for the Matsumoto zeta-function
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1996
SP  - 143
EP  - 158
VL  - 8
IS  - 1
PB  - Université Bordeaux I
UR  - http://geodesic.mathdoc.fr/item/JTNB_1996__8_1_143_0/
LA  - en
ID  - JTNB_1996__8_1_143_0
ER  - 
%0 Journal Article
%A Laurinčikas, Antanas
%T Limit theorems for the Matsumoto zeta-function
%J Journal de théorie des nombres de Bordeaux
%D 1996
%P 143-158
%V 8
%N 1
%I Université Bordeaux I
%U http://geodesic.mathdoc.fr/item/JTNB_1996__8_1_143_0/
%G en
%F JTNB_1996__8_1_143_0
Laurinčikas, Antanas. Limit theorems for the Matsumoto zeta-function. Journal de théorie des nombres de Bordeaux, Tome 8 (1996) no. 1, pp. 143-158. http://geodesic.mathdoc.fr/item/JTNB_1996__8_1_143_0/

[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statist. Inst., Calcutta, 1982.

[2] P. Billingsley, Convergence of Probability Measures, John Wiley, 1968. | Zbl | MR

[3] H. Heyer, Probability measures on locally compact groups, Springer-Verlag, Berlin-Heidelberg- New York, 1977. | Zbl | MR

[4] A. Laurinčikas, A weighted limit theorem for the Riemann zeta-function, Liet. matem. rink. 32(3) (1992), 369-376. (Russian) | Zbl | MR

[5] K. Matsumoto, Value-distribution of zeta-functions, Lecture Notes in Math. 1434 (1990),178-187. | Zbl | MR

[6] B.V. Shabat, Introduction to complex analysis, Moscow, 1969. (Russian) | Zbl