Voir la notice de l'article provenant de la source Numdam
We give exhaustive list of biquadratic fields and without -exotic symbol, i.e. for which the -rank of the Hilbert kernel (or wild kernel) is zero. Such are logarithmic principals [J3]. We detail an exemple of this technical numerical exploration and quote the family of theories and results we utilize. The -rank of tame, regular and wild kernel of -theory are connected with local and global problem of embedding in a -extension. Global class field theory can describe the -rank of the Hilbert kernel and reveals existence of symbols on not given by local class field theory.
@article{JTNB_1994__6_2_459_0, author = {Thomas, Herv\'e}, title = {Trivialit\'e du $2$-rang du noyau hilbertien}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {459--483}, publisher = {Universit\'e Bordeaux I}, volume = {6}, number = {2}, year = {1994}, mrnumber = {1360655}, zbl = {0822.11079}, language = {fr}, url = {http://geodesic.mathdoc.fr/item/JTNB_1994__6_2_459_0/} }
Thomas, Hervé. Trivialité du $2$-rang du noyau hilbertien. Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 2, pp. 459-483. http://geodesic.mathdoc.fr/item/JTNB_1994__6_2_459_0/