Trivialité du -rang du noyau hilbertien
Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 2, pp. 459-483
Voir la notice de l'article provenant de la source Numdam
We give exhaustive list of biquadratic fields and without -exotic symbol, i.e. for which the -rank of the Hilbert kernel (or wild kernel) is zero. Such are logarithmic principals [J3]. We detail an exemple of this technical numerical exploration and quote the family of theories and results we utilize. The -rank of tame, regular and wild kernel of -theory are connected with local and global problem of embedding in a -extension. Global class field theory can describe the -rank of the Hilbert kernel and reveals existence of symbols on not given by local class field theory.
@article{JTNB_1994__6_2_459_0,
author = {Thomas, Herv\'e},
title = {Trivialit\'e du $2$-rang du noyau hilbertien},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {459--483},
publisher = {Universit\'e Bordeaux I},
volume = {6},
number = {2},
year = {1994},
mrnumber = {1360655},
zbl = {0822.11079},
language = {fr},
url = {http://geodesic.mathdoc.fr/item/JTNB_1994__6_2_459_0/}
}
Thomas, Hervé. Trivialité du $2$-rang du noyau hilbertien. Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 2, pp. 459-483. http://geodesic.mathdoc.fr/item/JTNB_1994__6_2_459_0/