Voir la notice de l'article provenant de la source Numdam
Let be a system of disjoint subsets of . In this paper we examine the existence of an increasing sequence of natural numbers, , that is an asymptotic basis of all infinite elements of simultaneously, satisfying certain conditions on the rate of growth of the number of representations , for all sufficiently large and A theorem of P. Erdös is generalized.
@article{JTNB_1994__6_1_9_0, author = {Helm, Martin}, title = {A generalization of a theorem of {Erd\"os} on asymptotic basis of order $2$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {9--19}, publisher = {Universit\'e Bordeaux I}, volume = {6}, number = {1}, year = {1994}, mrnumber = {1305285}, zbl = {0812.11011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_1994__6_1_9_0/} }
TY - JOUR AU - Helm, Martin TI - A generalization of a theorem of Erdös on asymptotic basis of order $2$ JO - Journal de théorie des nombres de Bordeaux PY - 1994 SP - 9 EP - 19 VL - 6 IS - 1 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_1994__6_1_9_0/ LA - en ID - JTNB_1994__6_1_9_0 ER -
Helm, Martin. A generalization of a theorem of Erdös on asymptotic basis of order $2$. Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 1, pp. 9-19. http://geodesic.mathdoc.fr/item/JTNB_1994__6_1_9_0/