Voir la notice de l'article provenant de la source Numdam
The aim of this paper is to present a unifying approach to the computation of short addition chains. Our method is based upon continued fraction expansions. Most of the popular methods for the generation of addition chains, such as the binary method, the factor method, etc..., fit in our framework. However, we present new and better algorithms. We give a general upper bound for the complexity of continued fraction methods, as a function of a chosen strategy, thus the total number of operations required for the generation of an addition chain for all integers up to is shown to be , where is the complexity of computing the set of choices corresponding to the strategy. We also prove an analog of the Scholz-Brauer conjecture.
@article{JTNB_1994__6_1_21_0, author = {Bergeron, F. and Berstel, J. and Brlek, S.}, title = {Efficient computation of addition chains}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {21--38}, publisher = {Universit\'e Bordeaux I}, volume = {6}, number = {1}, year = {1994}, mrnumber = {1305286}, zbl = {0812.11072}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_1994__6_1_21_0/} }
TY - JOUR AU - Bergeron, F. AU - Berstel, J. AU - Brlek, S. TI - Efficient computation of addition chains JO - Journal de théorie des nombres de Bordeaux PY - 1994 SP - 21 EP - 38 VL - 6 IS - 1 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_1994__6_1_21_0/ LA - en ID - JTNB_1994__6_1_21_0 ER -
Bergeron, F.; Berstel, J.; Brlek, S. Efficient computation of addition chains. Journal de théorie des nombres de Bordeaux, Tome 6 (1994) no. 1, pp. 21-38. http://geodesic.mathdoc.fr/item/JTNB_1994__6_1_21_0/