Voir la notice de l'article provenant de la source Numdam
A new proof of Maxfield’s theorem is given, using automata and results from Symbolic Dynamics. These techniques permit to prove that points that are near normality to base (resp. ) are also near normality to base (resp. ), and to study genericity preservation for non Lebesgue measures when going from one base to the other. Finally, similar results are proved to bases the golden mean and its square.
@article{JTNB_1993__5_2_303_0, author = {Blanchard, Fran\c{c}ois}, title = {Non literal tranducers and some problems of normality}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {303--321}, publisher = {Universit\'e Bordeaux I}, volume = {5}, number = {2}, year = {1993}, mrnumber = {1265907}, zbl = {0817.11037}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_1993__5_2_303_0/} }
TY - JOUR AU - Blanchard, François TI - Non literal tranducers and some problems of normality JO - Journal de théorie des nombres de Bordeaux PY - 1993 SP - 303 EP - 321 VL - 5 IS - 2 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_1993__5_2_303_0/ LA - en ID - JTNB_1993__5_2_303_0 ER -
Blanchard, François. Non literal tranducers and some problems of normality. Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 303-321. http://geodesic.mathdoc.fr/item/JTNB_1993__5_2_303_0/