A note on free pro-p-extensions of algebraic number fields
Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 1, pp. 165-178

Voir la notice de l'article provenant de la source Numdam

For an algebraic number field k and a prime p, define the number ρ to be the maximal number d such that there exists a Galois extension of k whose Galois group is a free pro-p-group of rank d. The Leopoldt conjecture implies 1ρr 2 +1, (r 2 denotes the number of complex places of k). Some examples of k and p with ρ=r 2 +1 have been known so far. In this note, the invariant ρ is studied, and among other things some examples with ρ<r 2 +1 are given.

Keywords: algebraic number field, $\mathbb {Z}_p$-extension, free pro-$p$-group
@article{JTNB_1993__5_1_165_0,
     author = {Yamagishi, Masakazu},
     title = {A note on free pro-$p$-extensions of algebraic number fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {165--178},
     publisher = {Universit\'e Bordeaux I},
     volume = {5},
     number = {1},
     year = {1993},
     mrnumber = {1251235},
     zbl = {0784.11052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JTNB_1993__5_1_165_0/}
}
TY  - JOUR
AU  - Yamagishi, Masakazu
TI  - A note on free pro-$p$-extensions of algebraic number fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1993
SP  - 165
EP  - 178
VL  - 5
IS  - 1
PB  - Université Bordeaux I
UR  - http://geodesic.mathdoc.fr/item/JTNB_1993__5_1_165_0/
LA  - en
ID  - JTNB_1993__5_1_165_0
ER  - 
%0 Journal Article
%A Yamagishi, Masakazu
%T A note on free pro-$p$-extensions of algebraic number fields
%J Journal de théorie des nombres de Bordeaux
%D 1993
%P 165-178
%V 5
%N 1
%I Université Bordeaux I
%U http://geodesic.mathdoc.fr/item/JTNB_1993__5_1_165_0/
%G en
%F JTNB_1993__5_1_165_0
Yamagishi, Masakazu. A note on free pro-$p$-extensions of algebraic number fields. Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 1, pp. 165-178. http://geodesic.mathdoc.fr/item/JTNB_1993__5_1_165_0/