Polynomial mappings defined by forms with a common factor
Journal de théorie des nombres de Bordeaux, Série 2, Tome 4 (1992) no. 2, pp. 187-198.

Voir la notice de l'article provenant de la source Numdam

@article{JTNB_1992__4_2_187_0,
     author = {Halter-Koch, F. and Narkiewicz, W{\l}adys{\l}aw},
     title = {Polynomial mappings defined by forms with a common factor},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {187--198},
     publisher = {Universit\'e Bordeaux I},
     volume = {Ser. 2, 4},
     number = {2},
     year = {1992},
     zbl = {0778.12002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JTNB_1992__4_2_187_0/}
}
TY  - JOUR
AU  - Halter-Koch, F.
AU  - Narkiewicz, Władysław
TI  - Polynomial mappings defined by forms with a common factor
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1992
SP  - 187
EP  - 198
VL  - 4
IS  - 2
PB  - Université Bordeaux I
UR  - http://geodesic.mathdoc.fr/item/JTNB_1992__4_2_187_0/
LA  - en
ID  - JTNB_1992__4_2_187_0
ER  - 
%0 Journal Article
%A Halter-Koch, F.
%A Narkiewicz, Władysław
%T Polynomial mappings defined by forms with a common factor
%J Journal de théorie des nombres de Bordeaux
%D 1992
%P 187-198
%V 4
%N 2
%I Université Bordeaux I
%U http://geodesic.mathdoc.fr/item/JTNB_1992__4_2_187_0/
%G en
%F JTNB_1992__4_2_187_0
Halter-Koch, F.; Narkiewicz, Władysław. Polynomial mappings defined by forms with a common factor. Journal de théorie des nombres de Bordeaux, Série 2, Tome 4 (1992) no. 2, pp. 187-198. http://geodesic.mathdoc.fr/item/JTNB_1992__4_2_187_0/

[1] F. Halter-Koch, W. Narkiewicz, Finiteness properties of polynomial mappings, to appear. | MR

[2] S. Lang, Fundamentals of Diophantine Geometry, Springer 1983. | Zbl | MR

[3] S. Lang, Introduction to algebraic geometry, Interscience Publ. 1958. | Zbl | MR

[4] D.J. Lewis, Invariant sets of morphisms in projective and affine number spaces, J. Algebra 20 (1972), 419-434. | Zbl | MR

[5] P. Liardet, Sur les transformations polynomiales et rationnelles, Sém. Th. Nomb. Bordeaux exp. n° 29, 1971-1972. | Zbl | MR

[6] P. Liardet, Sur une conjecture de W. Narkiewicz, C. R. Acad. Sc. Paris 274 (1972), 1836-1838. | Zbl | MR

[7] W. Narkiewicz, On transformations by polynomials in two variables, II, Coll. Math. 13 (1964), 101-106. | Zbl | MR

[8] J.-P. Serre, Lectures on the Mordell-Weil-Theorem, Aspects of Mathematics, Braun schweig 1989. | Zbl

[9] B. L. Van Der Waerden, Algebra, 2. Teil, Springer 1967. | Zbl