Voir la notice de l'article provenant de la source Numdam
We show that the Duffin and Schaeffer conjecture holds in all dimensions greater than one.
Nous montrons que la conjecture de Duffin et Schaeffer est vraie en toute dimension supérieure à .
@article{JTNB_1989__1_1_81_0, author = {Pollington, A. D. and Vaughan, R. C.}, title = {The $k$-dimensional {Duffin} and {Schaeffer} conjecture}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {81--88}, publisher = {Universit\'e Bordeaux I}, volume = {Ser. 2, 1}, number = {1}, year = {1989}, mrnumber = {1050267}, zbl = {0714.11048}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JTNB_1989__1_1_81_0/} }
TY - JOUR AU - Pollington, A. D. AU - Vaughan, R. C. TI - The $k$-dimensional Duffin and Schaeffer conjecture JO - Journal de théorie des nombres de Bordeaux PY - 1989 SP - 81 EP - 88 VL - 1 IS - 1 PB - Université Bordeaux I UR - http://geodesic.mathdoc.fr/item/JTNB_1989__1_1_81_0/ LA - en ID - JTNB_1989__1_1_81_0 ER -
Pollington, A. D.; Vaughan, R. C. The $k$-dimensional Duffin and Schaeffer conjecture. Journal de théorie des nombres de Bordeaux, Série 2, Tome 1 (1989) no. 1, pp. 81-88. http://geodesic.mathdoc.fr/item/JTNB_1989__1_1_81_0/
1 Khintchine's problem in metric Diophantine approximation, Duke Math. J. 8 (1941), 243-255. | Zbl | MR | JFM
and ,2 On the distribution of convergents of almost all real numbers, J. Number Theory 2 (1970), 425-441. | Zbl | MR
,3 Approximation by reduced fractions, J. Math. Soc. of Japan 13 (1961), 342-345. | Zbl | MR
,4 Sieve methods," Academic Press, London, 1974. | Zbl
, "5 Metric theory of Diophantine approximations," V.H. Winston and Sons, Washington D.C., 1979. | Zbl
, "6 On the metric theory of Diophantine approximation, Pacific J. Math. 76 (1978), 527-539. | Zbl | MR
,7 On simultaneous approximations, Vesti Akad Navuk BSSR Ser Fiz.-Mat (1981), 41-47. | Zbl
,8, The Duffin and Schaeffer conjecture and simultaneous approximations, Dokl. Akad. Nauk BSSR 25 (1981), 780-783. | Zbl | MR