The k-dimensional Duffin and Schaeffer conjecture
Journal de théorie des nombres de Bordeaux, Série 2, Tome 1 (1989) no. 1, pp. 81-88.

Voir la notice de l'article provenant de la source Numdam

We show that the Duffin and Schaeffer conjecture holds in all dimensions greater than one.

Nous montrons que la conjecture de Duffin et Schaeffer est vraie en toute dimension supérieure à 1.

Keywords: diophantine approximation, $k$-dimensional, Lebesgues measure, Duffin and Schaeffer conjecture
@article{JTNB_1989__1_1_81_0,
     author = {Pollington, A. D. and Vaughan, R. C.},
     title = {The $k$-dimensional {Duffin} and {Schaeffer} conjecture},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {81--88},
     publisher = {Universit\'e Bordeaux I},
     volume = {Ser. 2, 1},
     number = {1},
     year = {1989},
     mrnumber = {1050267},
     zbl = {0714.11048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JTNB_1989__1_1_81_0/}
}
TY  - JOUR
AU  - Pollington, A. D.
AU  - Vaughan, R. C.
TI  - The $k$-dimensional Duffin and Schaeffer conjecture
JO  - Journal de théorie des nombres de Bordeaux
PY  - 1989
SP  - 81
EP  - 88
VL  - 1
IS  - 1
PB  - Université Bordeaux I
UR  - http://geodesic.mathdoc.fr/item/JTNB_1989__1_1_81_0/
LA  - en
ID  - JTNB_1989__1_1_81_0
ER  - 
%0 Journal Article
%A Pollington, A. D.
%A Vaughan, R. C.
%T The $k$-dimensional Duffin and Schaeffer conjecture
%J Journal de théorie des nombres de Bordeaux
%D 1989
%P 81-88
%V 1
%N 1
%I Université Bordeaux I
%U http://geodesic.mathdoc.fr/item/JTNB_1989__1_1_81_0/
%G en
%F JTNB_1989__1_1_81_0
Pollington, A. D.; Vaughan, R. C. The $k$-dimensional Duffin and Schaeffer conjecture. Journal de théorie des nombres de Bordeaux, Série 2, Tome 1 (1989) no. 1, pp. 81-88. http://geodesic.mathdoc.fr/item/JTNB_1989__1_1_81_0/

1 R.J. Duffin and A.C. Schaeffer, Khintchine's problem in metric Diophantine approximation, Duke Math. J. 8 (1941), 243-255. | Zbl | MR | JFM

2 P. Erdös, On the distribution of convergents of almost all real numbers, J. Number Theory 2 (1970), 425-441. | Zbl | MR

3 P.X. Gallagher, Approximation by reduced fractions, J. Math. Soc. of Japan 13 (1961), 342-345. | Zbl | MR

4 Halberstam And Richert, "Sieve methods," Academic Press, London, 1974. | Zbl

5 V.G. Sprindzuk, "Metric theory of Diophantine approximations," V.H. Winston and Sons, Washington D.C., 1979. | Zbl

6 J.D. Vaaler, On the metric theory of Diophantine approximation, Pacific J. Math. 76 (1978), 527-539. | Zbl | MR

7 V.T. Vilchinski, On simultaneous approximations, Vesti Akad Navuk BSSR Ser Fiz.-Mat (1981), 41-47. | Zbl

8, The Duffin and Schaeffer conjecture and simultaneous approximations, Dokl. Akad. Nauk BSSR 25 (1981), 780-783. | Zbl | MR