Algebraic subgroups of the complex torus
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 721-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study monomial parameterizations of algebraic subgroups of the torus over an arbitrary field and separately over the field of complex numbers. It is proved that every monomial parameterization defines an algebraic group. The necessary and sufficient conditions for the injectivity and existence of such parameterizations are obtained.
Keywords: algebraic subgroups, monomial parameterization, complex algebraic torus.
@article{JSFU_2024_17_6_a3,
     author = {Nikolay A. Mishko},
     title = {Algebraic subgroups of the complex torus},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {721--731},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a3/}
}
TY  - JOUR
AU  - Nikolay A. Mishko
TI  - Algebraic subgroups of the complex torus
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 721
EP  - 731
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a3/
LA  - en
ID  - JSFU_2024_17_6_a3
ER  - 
%0 Journal Article
%A Nikolay A. Mishko
%T Algebraic subgroups of the complex torus
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 721-731
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a3/
%G en
%F JSFU_2024_17_6_a3
Nikolay A. Mishko. Algebraic subgroups of the complex torus. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 721-731. http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a3/

[1] W.M.Schmidt, “Heights of points on subvarieties of $\mathbb{G}^n_m$”, Number Theory. Séminaire de théorie des nombres de Paris 1993–94, London Mathematical Society Lecture Note Series, 235, 1996, 157–187 | MR | Zbl

[2] E.Artin, Galois Theory, University of Notre Dame, London, 1942 ; 1944 | MR | Zbl

[3] H.J.S.Smith, “On systems of linear indeterminate equations and congruences”, Philosophical Transactions of the Royal Society, 151 (1861), 293–326 | DOI

[4] T.M.Sadykov, A.K.Tsikh, Multivariate Hypergeometric and Algebraic Functions, Nauka, M., 2014

[5] N.Bourbaki, Algèbre: Chapitres 1 à 3. Éléments de mathématique, Springer, Berlin, 2006 | MR