$\phi$-fixed point results in $b$-metric spaces with $wt$-distance
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 698-709.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, our program is to obtain a $\phi$-fixed point result along with some applications. The problem considered here is formulated by combining together several recent trends in metric fixed point theory and its extensions. Two illustrative examples are discussed. It is shown that some results existing in the literature are extended by our main theorem. The application presented is in the area of Volterra and Fredholm integral equations.
Keywords: $b$-metric space, $wt$-distance, fixed point, $\phi$-fixed point, integral equation.
@article{JSFU_2024_17_6_a1,
     author = {Ranajit Jyoti and Binayak S. Choudhury and Nikhilesh Metiya and Santu Dutta and Sankar P. Mondal},
     title = {$\phi$-fixed point results in $b$-metric spaces with $wt$-distance},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {698--709},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a1/}
}
TY  - JOUR
AU  - Ranajit Jyoti
AU  - Binayak S. Choudhury
AU  - Nikhilesh Metiya
AU  - Santu Dutta
AU  - Sankar P. Mondal
TI  - $\phi$-fixed point results in $b$-metric spaces with $wt$-distance
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 698
EP  - 709
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a1/
LA  - en
ID  - JSFU_2024_17_6_a1
ER  - 
%0 Journal Article
%A Ranajit Jyoti
%A Binayak S. Choudhury
%A Nikhilesh Metiya
%A Santu Dutta
%A Sankar P. Mondal
%T $\phi$-fixed point results in $b$-metric spaces with $wt$-distance
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 698-709
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a1/
%G en
%F JSFU_2024_17_6_a1
Ranajit Jyoti; Binayak S. Choudhury; Nikhilesh Metiya; Santu Dutta; Sankar P. Mondal. $\phi$-fixed point results in $b$-metric spaces with $wt$-distance. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 698-709. http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a1/

[1] H.Afshari, H.Aydi, E.Karapinar, “Existence of fixed points of set-valued mappings in b-metric spaces”, East Asian Math. J., 32:3 (2016), 319–332 | DOI | Zbl

[2] H.Aydi, M.F.Bota, E.Karapinar, S.Mitrović, “A fixed point theorem for set-valued quasi-contractions in b-metric spaces”, Fixed Point Theory and Applications, 2012 (2012), 1–8 | DOI | MR

[3] B.S.Choudhury, P.Chakraborty, A.Kundu, “Solution and stability of a fixed point problem for mappings without continuity”, International Journal of Nonlinear Analysis and Applications, 13:2 (2022), 2109–2119 | DOI

[4] S.Czerwik, “Contraction mappings in b-metric spaces”, Acta mathematica et informatica universitatis ostraviensis, 1:1 (1993), 5–11 | MR | Zbl

[5] K.Darko, H.Lakzian, V.Rakoc̆ević, “Ćirić's and Fisher's quasi-contractions in the framework of wt-distance”, Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 1–15 | DOI | MR

[6] N.Hussain, R.Saadati, R.P.Agrawal, “On the topology and wt-distance on metric type spaces”, Fixed point theory and applications, 2014 (2014), 1–14 | DOI | MR

[7] M.Imdad, A.R.Khan, H.N.Saleh, W.M.Alfaqih, “Some $\varphi$-fixed point results for (F, $\varphi$, $\alpha$-$\psi$)-contractive type mappings with applications”, Mathematics, 7:2 (2019), 122 | DOI | MR

[8] M.Jleli, B.Samet, C.Vetro, “Fixed point theory in partial metric spaces via $\varphi$-fixed point's concept in metric spaces”, Journal of Inequalities and Applications, 2014 (2014), 1–9 | DOI | MR

[9] O.Kada, T.Suzuki, W.Takahashi, “Nonconvex minimization theorems and fixed point theorems in complete metric spaces”, Mathematica japonicae, 44:2 (1996), 381–391 | MR | Zbl

[10] E.Karapinar, C.Chifu, “Results in wt-distance over b-metric spaces”, Mathematics, 8:2 (2020), 220 | DOI

[11] P.Kumrod, W.Sintunavarat, “A new contractive condition approach to $\varphi$-fixed point results in metric spaces and its applications”, Journal of Computational and Applied Mathematics, 311 (2017), 194–204 | DOI | MR | Zbl

[12] P.Kumrod, W.Sintunavarat, “On new fixed point results in various distance spaces via $\varphi$-fixed point theorems in d-generalized metric spaces with numerical results”, Journal of Fixed Point Theory and Applications, 21:3 (2019), 86 | DOI | MR | Zbl

[13] H.Lakzian, D.Kocev, V.Rakoc̆ević, “Cirić-generalized contraction via wt-distance”, Applied General Topology, 24:2 (2023), 267–280 | DOI | MR | Zbl

[14] B.Laouadi, T.E.Oussaeif, L.Benaoua, L.Guran, S.Radenovic, “Some new fixed point results in b-metric space with rational generalized contractive condition”, Journal of Siberian Federal University. Mathematics and Physics, 16:4 (2023), 506–518 | MR

[15] V.Rakoc̆ević, Fixed point results in w-distance spaces, CRC Press, 2021

[16] S.Roy, P.Saha, B.S.Choudhury, “Extensions of $\varphi$-fixed point results via w-distance”, Sahand Communications in Mathematical Analysis, 21:2 (2024), 219–234

[17] W.Shatanawi, K.Abodayeh, A.Mukheimer, “Some fixed point theorems in extended b-metric spaces”, UPB Sci. Bull. Ser. A, 80 (2018), 71–78 | MR | Zbl

[18] W.Sintunavarat, “Nonlinear integral equations with new admissibility types in b-metric spaces”, Journal of fixed point theory and applications, 18 (2016), 397–416 | DOI | MR | Zbl