Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_6_a0, author = {Rodion I. Gvozdev}, title = {Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {693--697}, publisher = {mathdoc}, volume = {17}, number = {6}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a0/} }
TY - JOUR AU - Rodion I. Gvozdev TI - Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 693 EP - 697 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a0/ LA - en ID - JSFU_2024_17_6_a0 ER -
%0 Journal Article %A Rodion I. Gvozdev %T Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 693-697 %V 17 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a0/ %G en %F JSFU_2024_17_6_a0
Rodion I. Gvozdev. Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 693-697. http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a0/
[1] M.A.Vsemirnov, R.I.Gvozdev, Ya.N.Nuzhin, T.B.Shaipova, “On generation of the groups $SL_n(\mathbb{Z}+i\mathbb{Z})$ and $PSL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute II”, Math. notes, 115:3 (2024), 289–300 | DOI | MR | Zbl
[2] M.C.Tamburini, P.Zucca, “Generation of Certain Matrix Groups by Three Involutions”, J. of Algebra, 195:2 (1997), 650–661 | DOI | MR | Zbl
[3] D.V.Levchuk, Ya.N.Nuzhin, “On generation of the group $PSL_n (\mathbb{Z} + i\mathbb{Z})$ by three involutions, two of which commute”, Journal of Siberian Federal University. Math. and Phys., 1:2 (2008), 133–139 | MR | Zbl
[4] D.V.Levchuk, “On generation of the group $SL_7(\mathbb{Z} + i\mathbb{Z})$ by three involutions, two of which commute”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:1 (2009), 35–38 (in Russian) | Zbl
[5] R.I.Gvozdev, Ya.N.Nuzhin, T.B.Shaipova, “On generation of the groups $SL_n(\mathbb{Z}+i\mathbb{Z})$ and $PSL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute”, The Bulletin of Irkutsk State University, 40 (2022), 49–62 (in Russian) | DOI | MR | Zbl
[6] Ya.N.Nuzhin, “Tensor representations and generating sets of involutions of some matrix groups”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 3, 2020, 133–141 (in Russian) | DOI | MR
[7] R.Steinberg, Lectures on Chevalley groups, Mir, M., 1975 (in Russian) | MR | Zbl
[8] A.I.Kostrikin, Introduction to algebra, Nauka, M., 1977 (in Russian) | MR | Zbl
[9] D.A.Suprunenko, Matrix groups, Nauka, M., 1977 (in Russian) | MR