Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 693-697.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ is generated by three involutions. Previously, the solution of the problem on the existence of generating triples of involutions two of which commute was completed for the groups $SL_n(\mathbb{Z}+i\mathbb{Z})$ and $PSL_n(\mathbb{Z}+i\mathbb{Z})$ (Math. notes, 115 (2024), no. 3). The question of generating these groups by three involutions remained unresolved only for $SL_6(\mathbb{Z}+i\mathbb{Z})$.
Keywords: special linear group, the ring of Gaussian integers, generating triples of involutions.
@article{JSFU_2024_17_6_a0,
     author = {Rodion I. Gvozdev},
     title = {Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {693--697},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a0/}
}
TY  - JOUR
AU  - Rodion I. Gvozdev
TI  - Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 693
EP  - 697
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a0/
LA  - en
ID  - JSFU_2024_17_6_a0
ER  - 
%0 Journal Article
%A Rodion I. Gvozdev
%T Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 693-697
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a0/
%G en
%F JSFU_2024_17_6_a0
Rodion I. Gvozdev. Generation of the group $SL_6(\mathbb{Z}+i\mathbb{Z})$ by three involutions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 6, pp. 693-697. http://geodesic.mathdoc.fr/item/JSFU_2024_17_6_a0/

[1] M.A.Vsemirnov, R.I.Gvozdev, Ya.N.Nuzhin, T.B.Shaipova, “On generation of the groups $SL_n(\mathbb{Z}+i\mathbb{Z})$ and $PSL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute II”, Math. notes, 115:3 (2024), 289–300 | DOI | MR | Zbl

[2] M.C.Tamburini, P.Zucca, “Generation of Certain Matrix Groups by Three Involutions”, J. of Algebra, 195:2 (1997), 650–661 | DOI | MR | Zbl

[3] D.V.Levchuk, Ya.N.Nuzhin, “On generation of the group $PSL_n (\mathbb{Z} + i\mathbb{Z})$ by three involutions, two of which commute”, Journal of Siberian Federal University. Math. and Phys., 1:2 (2008), 133–139 | MR | Zbl

[4] D.V.Levchuk, “On generation of the group $SL_7(\mathbb{Z} + i\mathbb{Z})$ by three involutions, two of which commute”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:1 (2009), 35–38 (in Russian) | Zbl

[5] R.I.Gvozdev, Ya.N.Nuzhin, T.B.Shaipova, “On generation of the groups $SL_n(\mathbb{Z}+i\mathbb{Z})$ and $PSL_n(\mathbb{Z}+i\mathbb{Z})$ by three involutions, two of which commute”, The Bulletin of Irkutsk State University, 40 (2022), 49–62 (in Russian) | DOI | MR | Zbl

[6] Ya.N.Nuzhin, “Tensor representations and generating sets of involutions of some matrix groups”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 26, no. 3, 2020, 133–141 (in Russian) | DOI | MR

[7] R.Steinberg, Lectures on Chevalley groups, Mir, M., 1975 (in Russian) | MR | Zbl

[8] A.I.Kostrikin, Introduction to algebra, Nauka, M., 1977 (in Russian) | MR | Zbl

[9] D.A.Suprunenko, Matrix groups, Nauka, M., 1977 (in Russian) | MR