On generalized Voigt function and its associated properties
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 599-608.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present manuscript, we aim to present a new type of the generalized Voigt function, and investigate its series representations. By using the series representations of our function, we also point out some generating relations associated with the Kampé de Fériet function, Srivastava's triple hypergeometric series, confluent hypergeometric functions of one and two variables, and generalized hypergeometric function. Furthermore, two interesting recurrence relations of our introduced Voigt function are also indicated.
Keywords: voigt function, wright function, kampé de Fériet function, srivastava's triple hypergeometric series.
@article{JSFU_2024_17_5_a4,
     author = {Ulfat Ansari and Musharraf Ali and Mohd Ghayasuddin},
     title = {On generalized {Voigt} function and its associated properties},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {599--608},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a4/}
}
TY  - JOUR
AU  - Ulfat Ansari
AU  - Musharraf Ali
AU  - Mohd Ghayasuddin
TI  - On generalized Voigt function and its associated properties
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 599
EP  - 608
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a4/
LA  - en
ID  - JSFU_2024_17_5_a4
ER  - 
%0 Journal Article
%A Ulfat Ansari
%A Musharraf Ali
%A Mohd Ghayasuddin
%T On generalized Voigt function and its associated properties
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 599-608
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a4/
%G en
%F JSFU_2024_17_5_a4
Ulfat Ansari; Musharraf Ali; Mohd Ghayasuddin. On generalized Voigt function and its associated properties. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 599-608. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a4/

[1] A.Erdélyi, W.Magnus, F.Oberhettinger, F.G.Tricomi, Table of integral transforms, v. 1, McGraw-Hill, New York, 1954 | MR

[2] M.El-Shahed, A.Salem, “An extension of Wright function and its properties”, J. Math., 2015 (2015) | DOI | MR | Zbl

[3] K.Gupta, A.Gupta, “On the study of unified representations of the generalized Voigt functions”, Palestine J. Math., 2:1 (2013), 32–37 | MR | Zbl

[4] M.Ghayasuddin, J.Choi, N.U.Khan, “A multiindex and multivariable generalization of the Voigt functions”, Far East J. Math. Sci., 101:6 (2017), 1167–1181 | Zbl

[5] S.B.Joshi, S.S.Joshi, H.H.Pawar, D.Ritelli, “Connections between normalized Wright functions with families of analytic functions with negative coefficients”, Analysis, 42:2 (2022) | DOI | MR

[6] V.Kiryakova, “Some special functions related to fractional calculus and fractional (non-integer) order control systems and equations”, Facta Univ. Ser. Autom. Control Robot., 7:1 (2008), 79–98 | MR

[7] D.Klusch, “Astrophysical Spectroscopy and neutron reactions, integral transforms and Voigt functions”, Astrophys. Space Sci., 175 (1991), 229–240 | DOI | MR

[8] N.U.Khan, T.Usman, M.Aman, “Some properties concerning the analysis of generalized Wright function”, J. Compu. Appl. Math., 376 (2020) | DOI | MR

[9] N.U.Khan, M.Kamarujjama, M.Ghayasuddin, “A generalization of Voigt function involving generalized Whittaker and Bessel functions”, Palestine J. Math., 4:2 (2015), 313–318 | MR | Zbl

[10] I.Podlubny, Fractional differential equations, Academic Press, New York, USA, 1999 | MR | Zbl

[11] F.Reiche, “Uber die Emission, Absorption und Intesitatsverteilung von Spektrallinien”, Ber. Deutsch. Phys. Ges., 15 (1913), 3–21

[12] E.D.Rainville, Special functions, Macmillan Company, New York, 1960 ; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971 | MR | Zbl | Zbl

[13] H.M.Srivastava, E.A.Miller, “A unified presentation of the Voigt functions”, Astrophys. Space Sci., 135 (1987), 111–118 | DOI | MR | Zbl

[14] H.M.Srivastava, H.L.Manocha, A treatise on generating functions, Halsted Press (Ellis Horwood Limited), Chichester; John Wiley and Sons, New York–Chichester–Brisbane–Toronto, 1984 | MR | Zbl

[15] H.M.Srivastava, M.A.Pathan, M. Kamarujjama, “Some unified presentations of the generalized Voigt functions”, Comm. Appl. Anal., 2 (1998), 49–64 | MR | Zbl

[16] H.M.Srivastava, M.G.Bin-Saad, M.A.Pathan, “A new theorem on multidimensional generating relations and its applications”, Proc. Jangjeon Math. Soc., 10:1 (2007), 7–22 | MR | Zbl