On calculation of bending of a thin orthotropic plate using Legendre and Chebyshev polynomials of the first kind
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 586-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of bending of a thin orthotropic rectangular plate clamped at the edges is considered in the paper. The solution is obtained using the Legendre and Chebyshev polynomials of the first kind. The function that approximates the solution of the biharmonic equation for an orthotropic plate is presented in the form of a double series expansion in these polynomials. Matrix transformations and properties of the Legendre and Chebyshev polynomials are also used. Roots of these polynomials are used as collocation points, and boundary value problem is reduced to a system of linear algebraic equations with respect to coefficients of the expansion. The problem of bending of a plate caused by the action of a distributed transverse load of constant intensity that corresponds to hydrostatic pressure is considered. This boundary value problem has analytical solution. The results of calculations for various ratios of the lengths of sides of the plate are presented. The values of deviation of solutions constructed using Legendre and Chebyshev polynomials from the analytical solution of the problem are presented in terms of the infinite norm and the finite norm in the space of square-integrable functions.
Keywords: bending a thin orthotropic plate, collocation method, Chebyshev polynomials of the first kind
Mots-clés : Legendre polynomials.
@article{JSFU_2024_17_5_a3,
     author = {Oksana V. Germider and Vasily N. Popov},
     title = {On calculation of bending of a thin orthotropic plate using {Legendre} and {Chebyshev} polynomials of the first kind},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {586--598},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a3/}
}
TY  - JOUR
AU  - Oksana V. Germider
AU  - Vasily N. Popov
TI  - On calculation of bending of a thin orthotropic plate using Legendre and Chebyshev polynomials of the first kind
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 586
EP  - 598
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a3/
LA  - en
ID  - JSFU_2024_17_5_a3
ER  - 
%0 Journal Article
%A Oksana V. Germider
%A Vasily N. Popov
%T On calculation of bending of a thin orthotropic plate using Legendre and Chebyshev polynomials of the first kind
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 586-598
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a3/
%G en
%F JSFU_2024_17_5_a3
Oksana V. Germider; Vasily N. Popov. On calculation of bending of a thin orthotropic plate using Legendre and Chebyshev polynomials of the first kind. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 586-598. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a3/

[1] D.P.Goloskokov, A.V.Matroso, “Method of initial functions in analyses of the bending of a thin orthotropic plate clamped along the contour”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 17:4 (2021), 330–344 (in Russian) | DOI | MR

[2] R.Li, Y.Zhong, B.Tian, Y.Liu, “On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates”, Applied Mathematics Letters, 22 (2009), 1821–1827 | DOI | MR | Zbl

[3] V.R.Lakshmi Gorty, N.Gupt, “Bending of fully clamped orthotropic rectangular thin plates using finite continuous ridgelet transform”, Materials Today: Proceedings, 47 (2021), 4199–4205 | DOI

[4] Q.Xu, Z.Yang, S.Ullah, Z.Jinghui, Y.Gao, “Analytical bending solutions of orthotropic rectangular thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method”, Advances in Civil Engineering, 2020, 8848879, 1–11 | DOI | MR

[5] S.K.Golushko, S.V.Idimeshev, V.P.Shapeyev, “Razrabotka i primeneniye metoda kollokatsiy i naimen'shikh nevyazok dlya resheniya zadach mekhaniki anizotropnykh sloyev plastin”, Vychislitel'nyye tekhnologii, 19:5 (2014), 24–36 (in Russian) | MR | Zbl

[6] P.Lazarev, G.M.Semenova, N.A.Romanova, “On a Limiting Passage as the Thickness of a Rigid Inclusions in an Equilibrium Problem for a Kirchhoff-Love Plate with a Crack”, J. Sib. Fed. Univ. Math. Phys., 14:1 (2021), 28–41 | DOI | MR | Zbl

[7] O.Ghorbel, J.B.Casimir, L.Hammami, I.Tawfiq, M.Haddar, “In-plane dynamic stiffness matrix for a free orthotropic plate”, Journal of Sound and Vibration, 364 (2016), 234–246 | DOI

[8] A.Deutsch, M.Eisenberger, “Benchmark analytic in-plane vibration frequencies of orthotropic rectangular plates”, Journal of Sound and Vibration, 541 (2022), 117248 | DOI

[9] I.V.Shcherbakov, B.A.Lyukshin, “Modelirovaniye povedeniya otklika ortotropnoy plastiny pri vozdeystvii dinamicheskoy nagruzki”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 61 (2019), 111–118 (in Russian) | DOI

[10] S.Zhang, L.Xu, “Bending of rectangular orthotropic thin plates with rotationally restrained edges: A finite integral transform solution”, Applied Mathematical Modelling, 46 (2017), 48–62 | DOI | MR | Zbl

[11] S.V.Sheshenin, R.R.Muradkhanov, “Asimptoticheskoye issledovaniye izgiba plastiny dlya sil'no ortotropnogo materiala”, Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 3 (2023), 36–57 (in Russian) | DOI | Zbl

[12] O.V.Germider, V.N.Popov, “On the calculation of the Poiseuille number in the annular region for non-isothermal gas flow”, Journal of Siberian Federal University Mathematics and Physics, 16:3 (2023), 330–339 | MR

[13] X.Hu, Z.Wang, B.Hu, “A collocation method based on roots of chebyshev polynomial for solving Volterra integral equations of the second kind”, Applied Mathematics Letters, 29 (2023), 108804 | DOI | MR

[14] E.Kosov, V.Temlyakov, “Sampling discretization of the uniform norm and applications”, J. Math. Anal. Appl., 2024, 128431 | DOI | MR

[15] S.I.Novikov, “Ob odnoy zadache interpolyatsii so znachitel'nym znacheniyem $L_2$-normy operatora Laplasa”, Tr. IMM UrO RAN, 28, no. 4, 2022, 143–153 (in Russian) | DOI | Zbl

[16] V.N.Temlyakov, “Diskretizatsiya integral'nykh norm polinomov s garmonikami iz giperbolicheskogo kresta po znacheniyam v tochkakh”, Trudy MIAN, 312, 2021, 282–293 (in Russian) | DOI | Zbl

[17] J.Berntsen, T.O.Espelid, A.Genz, “Algorithm 698: DCUHRE: an adaptive multidemensional integration routine for a vector of integrals”, ACM Trans. Math. Softw., 17:4 (1991), 452–456 | DOI | MR | Zbl

[18] S.P.Timoshenko, S.Woinowsky-Kriege, Theory of plates and shells, McGraw-Hill, New York, 1959 | MR

[19] E.Ventsel, Th.Krauthammer, Thin Plates and Shells. Theory: Analysis and Applications, CRC Press, Boca Raton, 2001

[20] J.Mason, D.Handscomb, Chebyshev polynomials, CRC Press, Florida, 2003 | MR | Zbl

[21] S.Liu, G.Trenkler, “Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences, 4:1 (2008), 160–177 | MR | Zbl

[22] J.Shen, T.Tang, L.Wang, Spectral Methods, Springer, Berlin–Heidelberg, 2011 | MR | Zbl

[23] R.W.Laureano, J.L.Mantari, J.Yarasca, A.S.Oktem, J.Monge, X.Zhou, “Boundary Discontinuous Fourier analysis of clamped isotropic and cross-ply laminated plates via Unified Formulation”, Composite Structures, 328 (2024), 117736 | DOI