Multivalued $\Delta$-symmetric covariant results in bipolar metric spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 575-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we proved some coupled fixed point theorems for Hybrid pair of mappings by using $\Delta$-symmetric covariant mappings in bipolar metric spaces. Also we give some examples which supports our results.
Keywords: $\Delta$-symmetric covariant mapping, Hybrid Pair of mappings, Coupled fixed point, bipolar metric spaces.
@article{JSFU_2024_17_5_a2,
     author = {G. N. V. Kishore and B. Srinuvasa Rao and D. Ram Prasad and Stojan Radenovi\'c},
     title = {Multivalued $\Delta$-symmetric covariant results in bipolar metric spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {575--585},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a2/}
}
TY  - JOUR
AU  - G. N. V. Kishore
AU  - B. Srinuvasa Rao
AU  - D. Ram Prasad
AU  - Stojan Radenović
TI  - Multivalued $\Delta$-symmetric covariant results in bipolar metric spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 575
EP  - 585
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a2/
LA  - en
ID  - JSFU_2024_17_5_a2
ER  - 
%0 Journal Article
%A G. N. V. Kishore
%A B. Srinuvasa Rao
%A D. Ram Prasad
%A Stojan Radenović
%T Multivalued $\Delta$-symmetric covariant results in bipolar metric spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 575-585
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a2/
%G en
%F JSFU_2024_17_5_a2
G. N. V. Kishore; B. Srinuvasa Rao; D. Ram Prasad; Stojan Radenović. Multivalued $\Delta$-symmetric covariant results in bipolar metric spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 5, pp. 575-585. http://geodesic.mathdoc.fr/item/JSFU_2024_17_5_a2/

[1] I.Altun, “A common fixed point theorem for multivalued Ćirić type mappings with new type compatibility”, An. St. Univ. Ovidius constanta, 17:2 (2009), 19–26 | MR | Zbl

[2] H.Aydi, Mohammad Barakat, Abdelbsset Felht, Huseyin Isik, “On $\phi$-contraction type couplings in partial metric spaces”, Journal of Mathematical Analysis, 8:4 (2017), 78–89 | MR

[3] D.Bajovic, Z.D.Mitrovic, M.Saha, “Remark on contraction principle in conex$_{tvs}$ b-metric spaces”, The Journal of Analysis | DOI | MR

[4] S.Banach, “Sur les operations dans les ensembles abstraits etleur applications aux equations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR

[5] M.Berinde, V.Berinde, “On a general class of multivalued weakly picard mappigs”, J. Math. Anal. Appl., 326 (2007), 772–782 | DOI | MR | Zbl

[6] P.Debnath, N.Konwar, S.Radenovic, Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Science, Springer Nature Singapore, 2021 | MR | Zbl

[7] Y.Feng, S.Liu, “Fixed point theorems of multi-valued contractive mappings”, J. Math. Anal. Appl., 317 (2006), 103–112 | DOI | MR | Zbl

[8] N.Hussain, A.Alotaibi, “Coupled coincidences for multi-valued contractions in partially ordered metric spaces”, Fixed point theory and Applications, 2011 (2011), 82 | DOI | MR

[9] G.Mani, A.J.Gnanaprakasam, Z.D.Mitrovic, M.-F.Bota, “Solving an Integral Equation via Fuzzy Triple Controlled Bipolar Metric Spaces”, Mathematics, 9 (2021), 3181 | DOI

[10] N.Mizoguchi, W.Takahashi, “Fixed point theorems for multi-valued mappings on complete metric spaces”, J. Math. Anal. Appl., 141 (1989), 177–188 | DOI | MR | Zbl

[11] A.Mutlu, Utku Gürdal, “Bipolar metric spaces and some fixed point theorems”, J. Nonlinear Sci. Appl., 9:9 (2016), 5362–5373 | DOI | MR | Zbl

[12] A.Mutlu, Kübra Özkan, Utku Gürdal, “Coupled fixed point theorems on bipolar metric spaces”, European journal of pure and applied mathematics, 10:4 (2017), 655–667 | MR | Zbl

[13] S.B.Nadler. jr, “multi-valued contractio mappings”, Pacific. J. Math., 30 (1969), 475–488 | DOI | MR | Zbl

[14] K.P.R.Rao, G.N.V.Kishore, P.R.Sobhana Babu, “Triple coincidence point theorems for multivalued maps in partially ordered metric spaces”, Universal Journal of Computational Mathematics, 1:2 (2013), 19–23 | DOI | MR

[15] B.E.Rhoades, “A fixed point theorems for a multivalued non-self mappigs”, Comment. Math. Univ. Carolin., 37:2 (1996), 401–404 | MR | Zbl

[16] B.Samet, C.Vetro, “Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces”, Nonlinear Analysis, 74 (2011), 4260–4268 | DOI | MR | Zbl

[17] B.Samet, Erdal Karapinar, Hassen Aydi and Vesna Cojbasic Rajic, “Discussion on some coupled fixed point theorems”, Fixed Point Theory and Applications, 2013 (2013), 50 | DOI | MR | Zbl

[18] V.Todorcevic, Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, Springer Nature Switzerland AG, 2019 | MR | Zbl