On the grothendieck duality for the space of holomorphic Sobolev functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 513-518.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the strong dual space $({\mathcal O}^s (D))^*$ for the space ${\mathcal O}^s (D) = H^s (D) \cap {\mathcal O} (D)$ of holomorphic functions from the Sobolev space $H^s(D)$, $s \in \mathbb Z$, over a bounded simply connected plane domain $D$ with infinitely differential boundary $\partial D$. We identify the dual space with the space of holomorhic functions on ${\mathbb C}^n\setminus \overline D$ that belong to $H^{1-s} (G\setminus \overline D)$ for any bounded domain $G$, containing the compact $\overline D$, and vanish at the infinity. As a corollary, we obtain a description of the strong dual space $({\mathcal O}_F (D))^*$ for the space ${\mathcal O}_F (D)$ of holomorphic functions of finite order of growth in $D$ (here, ${\mathcal O}_F (D)$ is endowed with the inductive limit topology with respect to the family of spaces ${\mathcal O}^s (D)$, $s \in \mathbb Z$). In this way we extend the classical Grothendieck–Köthe–Sebastião e Silva duality for the space of holomorphic functions.
Keywords: duality theorems, holomorphic functions of finite order of growth.
@article{JSFU_2024_17_4_a9,
     author = {Arkadii B. Levskii and Alexander A. Shlapunov},
     title = {On the grothendieck duality for the space of holomorphic {Sobolev} functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {513--518},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a9/}
}
TY  - JOUR
AU  - Arkadii B. Levskii
AU  - Alexander A. Shlapunov
TI  - On the grothendieck duality for the space of holomorphic Sobolev functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 513
EP  - 518
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a9/
LA  - en
ID  - JSFU_2024_17_4_a9
ER  - 
%0 Journal Article
%A Arkadii B. Levskii
%A Alexander A. Shlapunov
%T On the grothendieck duality for the space of holomorphic Sobolev functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 513-518
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a9/
%G en
%F JSFU_2024_17_4_a9
Arkadii B. Levskii; Alexander A. Shlapunov. On the grothendieck duality for the space of holomorphic Sobolev functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 513-518. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a9/

[1] A.Grothendieck, “Sur certain espaces de fonctions holomorphes. I”, J. Reine Angew. Math., 192 (1953), 35–64 | DOI | MR

[2] G.Köthe, “Dualität in der Funktionentheorie”, J. Reine Angew. Math., 191 (1953), 30–39 | MR

[3] J.Sebastião e Silva, “Analytic functions in functional analysis”, Portug. Math., 9 (1950), 1–130 | MR | Zbl

[4] A.Grothendieck, “Sur les espaces de solutions d'une classe generale d'equations aux derivees partielles”, J. Anal. Math., 2 (1953), 243–280 | DOI | MR | Zbl

[5] S. A.Shlapunov, N.Tarkhanov, “Duality by reproducing kernels”, International Journal of Math. and Math. Sciences, 6 (2003), 327–395 | DOI | MR | Zbl

[6] E.J.Straube, “Harmonic and analytic functions admitting a distribution boundary value”, Ann. Sc. norm. super. Pisa cl. sci., 11:4 (1984), 559–591 | MR | Zbl

[7] L.A.Aizenberg, A.M.Kytmanov, “On the possibility of holomorphic continuation to a domain of functions given on a part of its boundary”, Matem. Sb., 182:5 (1991), 490–597 | MR

[8] E.M.Chirka, “Analytic representation of $CR$-functions”, Matem. Sb., 27:4 (1975), 526–553 | DOI | MR

[9] S.Rempel, B.-W.Shulze, Index theory of elliptic boundary problems, Akademie-Verlag, Berlin, 1982 | MR | Zbl

[10] H.H.Schaefer, M.P.Wolff, Topological Vector Spaces, 2nd Edition, Springer, Berlin, 1999 | MR | Zbl