Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_4_a6, author = {Akbar R. Safarov and Ulugbek A. Ibragimov}, title = {Oscillatory integrals for {Mittag--Leffler} functions}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {488--496}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a6/} }
TY - JOUR AU - Akbar R. Safarov AU - Ulugbek A. Ibragimov TI - Oscillatory integrals for Mittag--Leffler functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 488 EP - 496 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a6/ LA - en ID - JSFU_2024_17_4_a6 ER -
%0 Journal Article %A Akbar R. Safarov %A Ulugbek A. Ibragimov %T Oscillatory integrals for Mittag--Leffler functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 488-496 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a6/ %G en %F JSFU_2024_17_4_a6
Akbar R. Safarov; Ulugbek A. Ibragimov. Oscillatory integrals for Mittag--Leffler functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 488-496. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a6/
[1] R.P.Agarwal, “A propos d'une note de M.Pierre Humbert”, C. R. Acad. Sci. Paris, 236 (1953), 2031–2032 | MR | Zbl
[2] M.M.Dzherbashyan, “On the asymtotic expansion of a function of Mittag-Leffler type”, Akad. Nauk Armjan. SSR Doklady, 19 (1954), 6–72 (in Russian)
[3] M.M.Dzherbashyan, “On integral representation of functions continuous on given rays (generalization of the Fourier integrals)”, Izvestija Akad. Nauk SSSR Ser. Mat., 18 (1954), 427–448 (in Russian) | MR
[4] M.M.Dzherbashyan, “On Abelian summation of the eneralized integral transform”, Akad. Nauk Armjan. SSR Izvestija, fiz-mat. estest. techn. nauki, 7:6 (1954), 1–26 (in Russian) | MR
[5] R.Gorenflo, A.Kilbas, F.Mainardi, S.Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2014 | DOI | MR | Zbl
[6] P.Humbert, “Quelques résultats relatifs à la fonction de Mittag-Leffler”, C. R. Acad. Sci. Paris, 236 (1953), 1467–1468 | MR | Zbl
[7] P.Humbert, R.P.Agarwal, “Sur la fonction de Mittag-Leffler et quelquenes de ses génèralisationes”, Bull. Sci. Math. (Ser.II), 77 (1953), 180–185 | MR | Zbl
[8] I.A.Ikromov, D.Müller, “On adapted coordinate systems”, Transactions of the American Mathematical Society, 363:6 (2011), 2821–2848 | DOI | MR | Zbl
[9] I.A.Ikromov, M.Kempe, D.Müller, “Estimates for maximal functions associated with hypersurfaces in $\mathbb{R}^{3}$ and related problems of harmonic analysis”, Acta mathematica, 204:2 (2010), 151–271 | DOI | MR | Zbl
[10] I.A.Ikromov, D.Müller, Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra, Annals of Mathematics Studies, 194, Princeton Univ. Press, Princeton, Oxford, 2016 | MR | Zbl
[11] I.A.Ikromov, “Invariant estimates of two-dimensional trigonometric integrals”, Math. USSR. Sb., 76 (1990), 473–488 | DOI | MR
[12] I.A.Ikromov, A.Safarov, A.Absalamov, “On the convergence exponent of the special integral of the Tarry problem for a quadratic polynomial”, J. Sib. Fed. Univ. Math. Phys, 16:4 (2023), 488–497 | MR
[13] M.G.Mittag-Leffler, “Sur l'intégrale de Laplace-Abel”, Comp. Rend. Acad. Sci. Paris, 135 (1902), 937–939
[14] M.G.Mittag-Leffler, “Une généralization de l'intégrale de Laplace-Abel”, Comp. Rend. Acad. Sci. Paris, 136 (1903), 537–539
[15] M.G.Mittag-Leffler, “Sur la nouvelle fonction $E_{\alpha}(x)$”, Comp. Rend. Acad. Sci. Paris, 137 (1903), 554–558
[16] M.G.Mittag-Leffler, “Sopra la funzione $E_{\alpha}(x)$”, Rend. R. Acc. Lincei (Ser.5), 13 (1904), 3–5
[17] I.Podlubny, Fractional Differensial Equations, Academic Press, New York, 1999 | MR
[18] M.Ruzhansky, “Pointwise van der Corput Lemma for Functions of Several Variables”, Functional Analysis and Its Applications, 43:1 (2009), 75–77 | DOI | MR | Zbl
[19] M.Ruzhansky, “Multidimensional decay in the van der Corput Lemma”, Studia Mathematica, 208:1 (2012), 1–9 | DOI | MR
[20] M.Ruzhansky, B.Torebek, “Van der Corput lemmas for Mittag-Leffler functions”, Fractional Calculus and Applied Analysis, 23:6 (2021), 1663–1677 | DOI | MR
[21] M.Ruzhansky, B.Torebek, “Van der Corput lemmas for Mittag-Leffler functions. II. $\alpha$-directions”, Bull. Sci. Math., 171 (2021), 103016 | DOI | MR | Zbl
[22] M.Ruzhansky, A.R.Safarov, G.Khasanov, “Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4”, Analysis and Mathematical Physics, 12 (2022), 130 | DOI | MR | Zbl
[23] A.Safarov, “On the $L^p$-bound for trigonometric integrals”, Analysis mathematica, 45 (2019), 153–176 | DOI | MR | Zbl
[24] A.Safarov, “Invariant estimates of two-dimensional oscillatory integrals”, Math. Not., 104 (2018), 293–302 | DOI | MR | Zbl
[25] A.Safarov, “On invariant estimates for oscillatory integrals with polynomial phase”, J. Sib. Fed. Univ. Math. Phys., 9 (2016), 102–107 | DOI | Zbl
[26] A.Safarov, “On a problem of restriction of Fourier transform on a hypersurface”, Russian Mathematics, 63:4 (2019), 57–63 | DOI | MR | Zbl
[27] A.R.Safarov, “Estimates for Mittag-Leffler Functions with Smooth Phase Depending on Two Variables”, J. Sib. Fed. Univ. Math. Phys., 15:4 (2022), 459-466 | DOI | MR | Zbl
[28] V.der Corput, “Zur Methode der stationaren pha”, Compositio Math., 1 (1934), 15–38 | MR | Zbl