Oscillatory integrals for Mittag--Leffler functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 488-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

Variations of the van der Corput lemmas that involve Mittag-Leffler functions are studied in this paper. The extension involves replacing the exponential function with a Mittag–Leffler-type function. It allows one to analyze oscillatory integrals encountered in the study of time-fractional partial differential equations. Several generalizations of both the first and second van der Corput lemmas are established. Optimal estimates for decay orders in specific cases of Mittag–Leffler functions are also derived.
Keywords: Mittag–Leffler functions, phase function
Mots-clés : amplitude.
@article{JSFU_2024_17_4_a6,
     author = {Akbar R. Safarov and Ulugbek A. Ibragimov},
     title = {Oscillatory integrals for {Mittag--Leffler} functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {488--496},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a6/}
}
TY  - JOUR
AU  - Akbar R. Safarov
AU  - Ulugbek A. Ibragimov
TI  - Oscillatory integrals for Mittag--Leffler functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 488
EP  - 496
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a6/
LA  - en
ID  - JSFU_2024_17_4_a6
ER  - 
%0 Journal Article
%A Akbar R. Safarov
%A Ulugbek A. Ibragimov
%T Oscillatory integrals for Mittag--Leffler functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 488-496
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a6/
%G en
%F JSFU_2024_17_4_a6
Akbar R. Safarov; Ulugbek A. Ibragimov. Oscillatory integrals for Mittag--Leffler functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 488-496. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a6/

[1] R.P.Agarwal, “A propos d'une note de M.Pierre Humbert”, C. R. Acad. Sci. Paris, 236 (1953), 2031–2032 | MR | Zbl

[2] M.M.Dzherbashyan, “On the asymtotic expansion of a function of Mittag-Leffler type”, Akad. Nauk Armjan. SSR Doklady, 19 (1954), 6–72 (in Russian)

[3] M.M.Dzherbashyan, “On integral representation of functions continuous on given rays (generalization of the Fourier integrals)”, Izvestija Akad. Nauk SSSR Ser. Mat., 18 (1954), 427–448 (in Russian) | MR

[4] M.M.Dzherbashyan, “On Abelian summation of the eneralized integral transform”, Akad. Nauk Armjan. SSR Izvestija, fiz-mat. estest. techn. nauki, 7:6 (1954), 1–26 (in Russian) | MR

[5] R.Gorenflo, A.Kilbas, F.Mainardi, S.Rogosin, Mittag-Leffler functions, related topics and applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2014 | DOI | MR | Zbl

[6] P.Humbert, “Quelques résultats relatifs à la fonction de Mittag-Leffler”, C. R. Acad. Sci. Paris, 236 (1953), 1467–1468 | MR | Zbl

[7] P.Humbert, R.P.Agarwal, “Sur la fonction de Mittag-Leffler et quelquenes de ses génèralisationes”, Bull. Sci. Math. (Ser.II), 77 (1953), 180–185 | MR | Zbl

[8] I.A.Ikromov, D.Müller, “On adapted coordinate systems”, Transactions of the American Mathematical Society, 363:6 (2011), 2821–2848 | DOI | MR | Zbl

[9] I.A.Ikromov, M.Kempe, D.Müller, “Estimates for maximal functions associated with hypersurfaces in $\mathbb{R}^{3}$ and related problems of harmonic analysis”, Acta mathematica, 204:2 (2010), 151–271 | DOI | MR | Zbl

[10] I.A.Ikromov, D.Müller, Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra, Annals of Mathematics Studies, 194, Princeton Univ. Press, Princeton, Oxford, 2016 | MR | Zbl

[11] I.A.Ikromov, “Invariant estimates of two-dimensional trigonometric integrals”, Math. USSR. Sb., 76 (1990), 473–488 | DOI | MR

[12] I.A.Ikromov, A.Safarov, A.Absalamov, “On the convergence exponent of the special integral of the Tarry problem for a quadratic polynomial”, J. Sib. Fed. Univ. Math. Phys, 16:4 (2023), 488–497 | MR

[13] M.G.Mittag-Leffler, “Sur l'intégrale de Laplace-Abel”, Comp. Rend. Acad. Sci. Paris, 135 (1902), 937–939

[14] M.G.Mittag-Leffler, “Une généralization de l'intégrale de Laplace-Abel”, Comp. Rend. Acad. Sci. Paris, 136 (1903), 537–539

[15] M.G.Mittag-Leffler, “Sur la nouvelle fonction $E_{\alpha}(x)$”, Comp. Rend. Acad. Sci. Paris, 137 (1903), 554–558

[16] M.G.Mittag-Leffler, “Sopra la funzione $E_{\alpha}(x)$”, Rend. R. Acc. Lincei (Ser.5), 13 (1904), 3–5

[17] I.Podlubny, Fractional Differensial Equations, Academic Press, New York, 1999 | MR

[18] M.Ruzhansky, “Pointwise van der Corput Lemma for Functions of Several Variables”, Functional Analysis and Its Applications, 43:1 (2009), 75–77 | DOI | MR | Zbl

[19] M.Ruzhansky, “Multidimensional decay in the van der Corput Lemma”, Studia Mathematica, 208:1 (2012), 1–9 | DOI | MR

[20] M.Ruzhansky, B.Torebek, “Van der Corput lemmas for Mittag-Leffler functions”, Fractional Calculus and Applied Analysis, 23:6 (2021), 1663–1677 | DOI | MR

[21] M.Ruzhansky, B.Torebek, “Van der Corput lemmas for Mittag-Leffler functions. II. $\alpha$-directions”, Bull. Sci. Math., 171 (2021), 103016 | DOI | MR | Zbl

[22] M.Ruzhansky, A.R.Safarov, G.Khasanov, “Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4”, Analysis and Mathematical Physics, 12 (2022), 130 | DOI | MR | Zbl

[23] A.Safarov, “On the $L^p$-bound for trigonometric integrals”, Analysis mathematica, 45 (2019), 153–176 | DOI | MR | Zbl

[24] A.Safarov, “Invariant estimates of two-dimensional oscillatory integrals”, Math. Not., 104 (2018), 293–302 | DOI | MR | Zbl

[25] A.Safarov, “On invariant estimates for oscillatory integrals with polynomial phase”, J. Sib. Fed. Univ. Math. Phys., 9 (2016), 102–107 | DOI | Zbl

[26] A.Safarov, “On a problem of restriction of Fourier transform on a hypersurface”, Russian Mathematics, 63:4 (2019), 57–63 | DOI | MR | Zbl

[27] A.R.Safarov, “Estimates for Mittag-Leffler Functions with Smooth Phase Depending on Two Variables”, J. Sib. Fed. Univ. Math. Phys., 15:4 (2022), 459-466 | DOI | MR | Zbl

[28] V.der Corput, “Zur Methode der stationaren pha”, Compositio Math., 1 (1934), 15–38 | MR | Zbl