Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_4_a5, author = {Igor G. Donskoy}, title = {Influence of boundary conditions on the critical parameters of reactive flow ignition in a channelwith heat recuperation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {478--487}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a5/} }
TY - JOUR AU - Igor G. Donskoy TI - Influence of boundary conditions on the critical parameters of reactive flow ignition in a channelwith heat recuperation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 478 EP - 487 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a5/ LA - en ID - JSFU_2024_17_4_a5 ER -
%0 Journal Article %A Igor G. Donskoy %T Influence of boundary conditions on the critical parameters of reactive flow ignition in a channelwith heat recuperation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 478-487 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a5/ %G en %F JSFU_2024_17_4_a5
Igor G. Donskoy. Influence of boundary conditions on the critical parameters of reactive flow ignition in a channelwith heat recuperation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 478-487. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a5/
[1] D.A.Frank-Kamenestskii, Diffusion and heat transfer in chemical kinetics, Princeton Univ. Press, 2015
[2] L.A.Vulis, Thermal regime of combustion, Gosenergoizdat, M., 1954
[3] Ya.B.Zeldovich, G.I Barenblatt, V.B.Librovich, G.M.Makhviladze, Mathematical theory of combustion and explosion, Nauka, M., 1980 | MR
[4] A.G.Merzhanov, E.A.Shtessel', “Thermal explosion under natural convection”, Dokl. Akad. Nauk SSSR, 194 (1970), 136–139 (in Russian)
[5] D.R.Jones, “The dynamic stability of confined, exothermically reacting fluids”, Int. J. Heat Mass Transfer, 16 (1973), 157–167 | DOI
[6] V.Balakotaiah, P.Pourtalet, “Natural convection effects on thermal ignition in a porous medium. II. Lumped thermal model-I”, Proc. Roy. Soc. A., 429 (1990), 555–567
[7] B.V.Novozhilov, N.G.Samoilenko, G.B.Manelis, “Thermal explosion in agitated medium”, Dokl. Akad. Nauk, 385 (2002), 217–219 (in Russian) | Zbl
[8] T.P.Ivleva, A.G.Merzhanov, E.N.Rumanov, N.I.Vaganova, A.N.Campbell, A.N.Hayhurst, When do chemical reactions promote mixing?, Chem. Eng. J., 168 (2011), 1–14 | DOI
[9] J.Melguizo-Gavilanes, P.A.Boettcher, R.Mevel, J.E.Shepherd, “Numerical study of the transition between slow reaction and ignition in a cylindrical vessel”, Combust. Flame, 204 (2019), 116–136 | DOI
[10] M.J.Frankel, “Thermal explosion theory in an external field”, J. Appl. Phys., 50 (1979), 4412 | DOI
[11] D.D.Joseph, “Non-linear heat generation and stability of the temperature distribution in conducting solids”, Int. J. Heat Mass Transfer, 8 (1965), 281–288 | DOI | Zbl
[12] S.A.Bostandzhiyan, A.G.Merzhanov, S.I Khudyaev, “On hydrodynamic thermal explostion”, Dokl. Akad. Nauk SSSR, 163 (1965), 133–136 (in Russian)
[13] S.A.Bostandzhiyan, I.S.Gordopolova, V.A.Shcherbakov, “Modeling of an electrothermal explosion in gasless systems placed into an electroconducting medium”, Combust. Explos. Shock Waves, 49 (2013), 668–675 | DOI
[14] I.G.Dik, “Critical conditions for thermal explosion of a viscous fluid flowing in a channel of finite length”, Combust. Explos. Shock Waves, 12 (1976), 70–77 | DOI
[15] S.O.Ajadi, “The influence of viscous heating and wall thermal conditions on the thermal ignition of a Poiseuille/Couette reactive flow”, Russ. J. Phys. Chem. B, 4 (2010), 652–659 | DOI
[16] R.Blouquin, G.Joulin, “On a Variational Principle for Reaction/Radiation/Conduction Equilibria”, Combust. Sci. Tech., 112 (1996), 375–385 | DOI
[17] S.Sazhin, E.Shchepakina, V.Sobolev, “Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model”, J. Eng. Math., 114 (2019), 1–17 | DOI | MR | Zbl
[18] V.S.Zarubin, G.N.Kuvyrkin, I.Yu.Savelyeva, A.V.Zhuravskii, “Conditions of thermal explosion on a plate under convecive-radiative heat transfer”, Bull. Moscow St. Tech. Univ. Ser. Nat. Sci., 6 (2020), 48–59 (in Russian) | DOI | MR
[19] P. Bader, “On a quasilinear elliptic boundary value problem of nonlocal type with an application in combustion theory”, Z. angew. Math. Phys., 35 (1984), 771–779 | DOI | MR | Zbl
[20] V.A.Kudinov, A.V.Eremin, I.V.Kudinov, V.V.Zhukov, “Strongly Nonequilibrium Model of Thermal Ignition with Account for Space-Time Nonlocality”, Combust. Explos. Shock Waves, 54 (2018), 649–653 | DOI
[21] Q.Xu, Y.Xu, “Extremely low order time-fractional differential equation and application in combustion process”, Comm. Nonlinear Sci. Num. Sim., 64 (2018), 135–148 | DOI | MR
[22] R.V.Fursenko, S.S.Minaev, V.S.Babkin, “Thermal Interaction of Two Flame Fronts Propagating in Channels with Opposing Gas Flows”, Combust. Explos. Shock Waves, 37 (2001), 493–500 | DOI
[23] R.V.Fursenko, S.S.Minaev, “Flame stability in a system with counterflow heat exchange”, Combust. Explos. Shock Waves, 41 (2005), 133–139 | DOI
[24] V.N.Kurdyumov M.Matalon, “Analysis of an idealized heat-recirculating microcombustor”, Proc. Combust. Inst., 33 (2011), 3275–3284 | DOI
[25] V.N.Kurdyumov, D.Fernandez-Galisteo, C. Jimenez, “Superadiabatic small-scale combustor with counter-flow heat exchange: Flame structure and limits to narrow-channel approximation”, Combust. Flame, 222 (2020), 233–241 | DOI
[26] I.G.Dik, A.V.Tolstykh, “Ignition of a porous layer with a flow of heat carrier”, Combust. Explos. Shock Waves, 30 (1994), 135–139 | DOI
[27] I.G.Donskoi, “Variational problems for combustion theory equations”, J. Appl. Mech. Tech. Phys., 63 (2022), 773–781 | DOI | MR
[28] E.I.Maksimov, “Combustion process in reactors”, Combust. Explos. Shock Waves, 14 (1978), 612–618 | DOI
[29] I.V.Fryazinov, “An algorithm for the solution of difference problems by graphs”, USSR Comput. Math. Math. Phys., 10 (1970), 268–273 | DOI | MR
[30] I.G.Donskoy, “Steady-state equation of thermal explosion in a distributed activation energy medium: numerical solution and approximations”, iPolytech J., 26 (2022), 626–639 | DOI
[31] H.V.Mott, Z.A.Green, “On Danckwerts' Boundary Conditions for the Plug-Flow with Dispersion/Reaction Model”, Chem. Eng. Comm., 202 (2015), 739–745 | DOI
[32] A.E.Quintero, M.Vera, “Laminar counterflow parallel-plate heat exchangers: An exact solution including axial and transverse wall conduction effects”, Int. J. Heat Mass Transfer, 104 (2017), 1229–1245 | DOI | MR