Integral operator of potential type for infinitely differentiable functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 464-469.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the infinite differentiability of an integral operator of the potential type for an infinitely differentiable function defined on the boundary of a bounded domain with the boundary of the class $\mathcal{C}^\infty$ up to the boundary of the domain on both sides.
Keywords: the differentiability of an integral operator of the potential type
@article{JSFU_2024_17_4_a3,
     author = {Simona G. Myslivets},
     title = {Integral operator of potential type for infinitely differentiable functions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {464--469},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a3/}
}
TY  - JOUR
AU  - Simona G. Myslivets
TI  - Integral operator of potential type for infinitely differentiable functions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 464
EP  - 469
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a3/
LA  - en
ID  - JSFU_2024_17_4_a3
ER  - 
%0 Journal Article
%A Simona G. Myslivets
%T Integral operator of potential type for infinitely differentiable functions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 464-469
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a3/
%G en
%F JSFU_2024_17_4_a3
Simona G. Myslivets. Integral operator of potential type for infinitely differentiable functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 464-469. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a3/

[1] A.M.Kytmanov, The Bochner-Martinelli integral and its applications, Birkhäuser, Basel–Boston–Berlin, 1995 | MR | Zbl

[2] A.M.Kytmanov, S.G.Myslives, Multidimensional Integral Representations. Problems of Analytic Continuation, Springer Verlag, Basel–Boston, 2015 | MR | Zbl

[3] N.M.Günter, Potential theory andd its applications to basic problems of mathematical physics, Ungar, New York, 1967 | MR