Integral operator of potential type for infinitely differentiable functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 464-469
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we prove the infinite differentiability of an integral operator of the potential type for an infinitely differentiable function defined on the boundary of a bounded domain with the boundary of the class $\mathcal{C}^\infty$ up to the boundary of the domain on both sides.
Keywords:
the differentiability of an integral operator of the potential type
@article{JSFU_2024_17_4_a3,
author = {Simona G. Myslivets},
title = {Integral operator of potential type for infinitely differentiable functions},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {464--469},
year = {2024},
volume = {17},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a3/}
}
TY - JOUR AU - Simona G. Myslivets TI - Integral operator of potential type for infinitely differentiable functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 464 EP - 469 VL - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a3/ LA - en ID - JSFU_2024_17_4_a3 ER -
Simona G. Myslivets. Integral operator of potential type for infinitely differentiable functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 464-469. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a3/
[1] A.M.Kytmanov, The Bochner-Martinelli integral and its applications, Birkhäuser, Basel–Boston–Berlin, 1995 | MR | Zbl
[2] A.M.Kytmanov, S.G.Myslives, Multidimensional Integral Representations. Problems of Analytic Continuation, Springer Verlag, Basel–Boston, 2015 | MR | Zbl
[3] N.M.Günter, Potential theory andd its applications to basic problems of mathematical physics, Ungar, New York, 1967 | MR