On the boundedness of maximal operators associated with singular surfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 455-463

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to investigate maximal operators associated with singular surfaces. It is proved the boundedness of these operators in the space $L^{p},$ when singular surfaces are given by parametric equations in $\mathbb{R}^{3}.$
Keywords: maximal operator, averaging operator, fractional power series, nonsingular point, critical exponent.
@article{JSFU_2024_17_4_a2,
     author = {Salim E. Usmanov},
     title = {On the boundedness of maximal operators associated with singular surfaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {455--463},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/}
}
TY  - JOUR
AU  - Salim E. Usmanov
TI  - On the boundedness of maximal operators associated with singular surfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 455
EP  - 463
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/
LA  - en
ID  - JSFU_2024_17_4_a2
ER  - 
%0 Journal Article
%A Salim E. Usmanov
%T On the boundedness of maximal operators associated with singular surfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 455-463
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/
%G en
%F JSFU_2024_17_4_a2
Salim E. Usmanov. On the boundedness of maximal operators associated with singular surfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 455-463. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/