Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_4_a2, author = {Salim E. Usmanov}, title = {On the boundedness of maximal operators associated with singular surfaces}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {455--463}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/} }
TY - JOUR AU - Salim E. Usmanov TI - On the boundedness of maximal operators associated with singular surfaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 455 EP - 463 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/ LA - en ID - JSFU_2024_17_4_a2 ER -
%0 Journal Article %A Salim E. Usmanov %T On the boundedness of maximal operators associated with singular surfaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 455-463 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/ %G en %F JSFU_2024_17_4_a2
Salim E. Usmanov. On the boundedness of maximal operators associated with singular surfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 455-463. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/
[1] E.M.Stein, “Maximal functions. Spherical means”, Proc. Nat. Acad. Sci. U.S.A., 73:7 (1976), 2174–2175 | DOI | MR | Zbl
[2] J.Bourgain, “Averages in the plane convex curves and maximal operators”, J. Anal. Math., 47 (1986), 69–85 | DOI | MR | Zbl
[3] A.Greenleaf, “Principal curvature and harmonic analysis”, Indiana Univ. Math. J., 30:4 (1981), 519–537 | DOI | MR | Zbl
[4] C.D.Sogge, “Maximal operators associated to hypersurfaces with one nonvanishing principal curvature, Fourier analysis and partial differential equations”, Stud. Adv. Math., 73:7 (1995), 317–323 | MR
[5] C.D.Sogge, E.M.Stein, “Averages of functions over hypersurfaces in $\mathbb{R}^{n}$”, Inventiones mathematicae, 82 (1985), 543–556 | DOI | MR | Zbl
[6] A.Iosevich, E.Sawyer, “Maximal Averages over surfaces”, Adv. in Math., 132:1 (1997), 46–119 | DOI | MR | Zbl
[7] A.Iosevich, E.Sawyer, A.Seeger, “On averaging operators associated with convex hypersurfaces of finite type”, J. Anal. Math., 79 (1999), 159–187 | DOI | MR | Zbl
[8] I.A.Ikromov, M.Kempe, D.Müller, “Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces”, Duke Math. J., 126:3 (2005), 471–490 | DOI | MR | Zbl
[9] I.A.Ikromov, M.Kempe, D.Müller, “Estimates for maximal functions associated to hypersurfaces in $\mathbb{R}^{3}$ and related problems of harmonic analysis”, Acta Math., 204 (2010), 151–171 | DOI | MR
[10] I.A.Ikromov, S.E.Usmanov, “On boundedness of maximal operators associated with hypersurfaces”, J. Math. Sci., 264 (2022), 715–745 | DOI | MR | Zbl
[11] S.E.Usmanov, “The Boundedness of Maximal Operators Associated with Singular Surfaces”, Russ. Math., 65:6 (2021), 73–83 | DOI | MR | Zbl
[12] S.E.Usmanov, “On the Boundedness Problem of Maximal Operators”, Russ. Math., 66 (2022), 74–83 | DOI | MR | Zbl
[13] S.E.Usmanov, “On Maximal Operators Associated with a Family of Singular Surfaces”, J. Sib. Fed. Univ. Math. Phys., 16:2 (2023), 265–274 | MR
[14] S.E.Usmanov, “On the Boundedness of the Maximal Operators Associated with Singular Hypersurfaces”, Math Notes, 114:1-2 (2023), 108–116 | DOI | MR | Zbl
[15] T.Collins, A.Greenleaf, M.Pramanik, “A multi-dimensional resolution of singularities with applications to analysis”, Amer. J. of Math., 135:5 (2013), 1179–1252 | DOI | MR | Zbl
[16] M.Greenblatt, “A direct resolution of singularities for functions of two variables with applications to analysis”, J. Anal. Math., 92 (2004), 233–257 | DOI | MR | Zbl