On the boundedness of maximal operators associated with singular surfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 455-463
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to investigate maximal operators associated with singular surfaces. It is proved the boundedness of these operators in the space $L^{p},$ when singular surfaces are given by parametric equations in $\mathbb{R}^{3}.$
Keywords:
maximal operator, averaging operator, fractional power series, nonsingular point, critical exponent.
@article{JSFU_2024_17_4_a2,
author = {Salim E. Usmanov},
title = {On the boundedness of maximal operators associated with singular surfaces},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {455--463},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/}
}
TY - JOUR AU - Salim E. Usmanov TI - On the boundedness of maximal operators associated with singular surfaces JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 455 EP - 463 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/ LA - en ID - JSFU_2024_17_4_a2 ER -
%0 Journal Article %A Salim E. Usmanov %T On the boundedness of maximal operators associated with singular surfaces %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 455-463 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/ %G en %F JSFU_2024_17_4_a2
Salim E. Usmanov. On the boundedness of maximal operators associated with singular surfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 455-463. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/