On the boundedness of maximal operators associated with singular surfaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 455-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to investigate maximal operators associated with singular surfaces. It is proved the boundedness of these operators in the space $L^{p},$ when singular surfaces are given by parametric equations in $\mathbb{R}^{3}.$
Keywords: maximal operator, averaging operator, fractional power series, nonsingular point, critical exponent.
@article{JSFU_2024_17_4_a2,
     author = {Salim E. Usmanov},
     title = {On the boundedness of maximal operators associated with singular surfaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {455--463},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/}
}
TY  - JOUR
AU  - Salim E. Usmanov
TI  - On the boundedness of maximal operators associated with singular surfaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 455
EP  - 463
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/
LA  - en
ID  - JSFU_2024_17_4_a2
ER  - 
%0 Journal Article
%A Salim E. Usmanov
%T On the boundedness of maximal operators associated with singular surfaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 455-463
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/
%G en
%F JSFU_2024_17_4_a2
Salim E. Usmanov. On the boundedness of maximal operators associated with singular surfaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 455-463. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a2/

[1] E.M.Stein, “Maximal functions. Spherical means”, Proc. Nat. Acad. Sci. U.S.A., 73:7 (1976), 2174–2175 | DOI | MR | Zbl

[2] J.Bourgain, “Averages in the plane convex curves and maximal operators”, J. Anal. Math., 47 (1986), 69–85 | DOI | MR | Zbl

[3] A.Greenleaf, “Principal curvature and harmonic analysis”, Indiana Univ. Math. J., 30:4 (1981), 519–537 | DOI | MR | Zbl

[4] C.D.Sogge, “Maximal operators associated to hypersurfaces with one nonvanishing principal curvature, Fourier analysis and partial differential equations”, Stud. Adv. Math., 73:7 (1995), 317–323 | MR

[5] C.D.Sogge, E.M.Stein, “Averages of functions over hypersurfaces in $\mathbb{R}^{n}$”, Inventiones mathematicae, 82 (1985), 543–556 | DOI | MR | Zbl

[6] A.Iosevich, E.Sawyer, “Maximal Averages over surfaces”, Adv. in Math., 132:1 (1997), 46–119 | DOI | MR | Zbl

[7] A.Iosevich, E.Sawyer, A.Seeger, “On averaging operators associated with convex hypersurfaces of finite type”, J. Anal. Math., 79 (1999), 159–187 | DOI | MR | Zbl

[8] I.A.Ikromov, M.Kempe, D.Müller, “Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces”, Duke Math. J., 126:3 (2005), 471–490 | DOI | MR | Zbl

[9] I.A.Ikromov, M.Kempe, D.Müller, “Estimates for maximal functions associated to hypersurfaces in $\mathbb{R}^{3}$ and related problems of harmonic analysis”, Acta Math., 204 (2010), 151–171 | DOI | MR

[10] I.A.Ikromov, S.E.Usmanov, “On boundedness of maximal operators associated with hypersurfaces”, J. Math. Sci., 264 (2022), 715–745 | DOI | MR | Zbl

[11] S.E.Usmanov, “The Boundedness of Maximal Operators Associated with Singular Surfaces”, Russ. Math., 65:6 (2021), 73–83 | DOI | MR | Zbl

[12] S.E.Usmanov, “On the Boundedness Problem of Maximal Operators”, Russ. Math., 66 (2022), 74–83 | DOI | MR | Zbl

[13] S.E.Usmanov, “On Maximal Operators Associated with a Family of Singular Surfaces”, J. Sib. Fed. Univ. Math. Phys., 16:2 (2023), 265–274 | MR

[14] S.E.Usmanov, “On the Boundedness of the Maximal Operators Associated with Singular Hypersurfaces”, Math Notes, 114:1-2 (2023), 108–116 | DOI | MR | Zbl

[15] T.Collins, A.Greenleaf, M.Pramanik, “A multi-dimensional resolution of singularities with applications to analysis”, Amer. J. of Math., 135:5 (2013), 1179–1252 | DOI | MR | Zbl

[16] M.Greenblatt, “A direct resolution of singularities for functions of two variables with applications to analysis”, J. Anal. Math., 92 (2004), 233–257 | DOI | MR | Zbl