An application of the plane curve's standard basis to a certain class of problems from classical mechanics
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 537-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the moving basis of a curve in polar coordinates can always be considered as a right-handed reference frame moving with acceleration. A system of differential equations is obtained that describes the trajectory of a freely falling body in a non-inertial reference frame coinciding with the standard basis of the curve. Finally, they were solved numerically using the Archimedean spiral, the three-petal rose and the cardioid as examples.
Keywords: relative motion, line curvature, mechanics of curvilinear motion, computer simulation.
@article{JSFU_2024_17_4_a12,
     author = {Sophie B. Bogdanova and Sergey O. Gladkov},
     title = {An application of the plane curve's standard basis to a certain class of problems from classical mechanics},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {537--543},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a12/}
}
TY  - JOUR
AU  - Sophie B. Bogdanova
AU  - Sergey O. Gladkov
TI  - An application of the plane curve's standard basis to a certain class of problems from classical mechanics
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 537
EP  - 543
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a12/
LA  - en
ID  - JSFU_2024_17_4_a12
ER  - 
%0 Journal Article
%A Sophie B. Bogdanova
%A Sergey O. Gladkov
%T An application of the plane curve's standard basis to a certain class of problems from classical mechanics
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 537-543
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a12/
%G en
%F JSFU_2024_17_4_a12
Sophie B. Bogdanova; Sergey O. Gladkov. An application of the plane curve's standard basis to a certain class of problems from classical mechanics. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 537-543. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a12/

[1] A.P.Norden, Course in Differential Geometry, State Publishing House of Physical and Mathematical Literature, M., 1958 (in Russian) | MR

[2] V.I.Smirnov, Course of Higher Mathematics, v. 2, Fizmatlit, M., 1967 (in Russian) | MR

[3] G.M.Fikhtengolts, Course of Differential and Integral Calculus, v. 1, Fizmatlit, M., 1962 (in Russian)

[4] S.B.Bogdanova, S.O.Gladkov, “Geometric phase transition in the problem of brachistochrone”, Journal of Faculty of Physics Lomonosov Moscow State University, 1 (2016), 161101, 6 pp. (in Russian)

[5] S.O.Gladkov, S.B.Bogdanova, “Analytical and numerical solution of the problem on brachistochrones in some general cases”, Journal of Mathematical Sciences, 245:4 (2020), 528–537 | DOI | MR | Zbl

[6] S.O.Gladkov, S.B.Bogdanova, “On a class of planar geometrical curves with constant reaction forces acting on particles moving along them”, Journal of Mathematical Sciences, 257:1 (2021), 27–30 | DOI | Zbl

[7] A.A.Savelov, Plane Curves. Systematics, Properties, Applications, Fizmatlit, M., 1960 (in Russian) | MR

[8] L.D.Landau, Theoretical Physics. Mechanics, Nauka, M., 1988 (in Russian) | MR | Zbl

[9] D.V.Sivukhin, General Course of Physics. Mechanics, Fizmatlit, M., 2010 (in Russian)

[10] S.P.Strelkov, Mechanics, Nauka, M., 1975 (in Russian) | MR