On cyclic interpolative Kannan-Meir-Keeler type contraction in metric spaces
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 448-454.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper introduces the idea of interpolative contractions within the category of Kannan-Meir-Keeler type cyclic contractions. Additionally, we provide a demonstration establishing the existence of a fixed point in a complete metric space.
Keywords: cyclic contraction, fixed point, metric space, Kannan Meir-Keeler.
Mots-clés : interpolative
@article{JSFU_2024_17_4_a1,
     author = {Mohamed Edraoui and Soukaina Semami and Amine El'koufi and Mohamed Aamri},
     title = {On cyclic interpolative {Kannan-Meir-Keeler} type contraction in metric spaces},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {448--454},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a1/}
}
TY  - JOUR
AU  - Mohamed Edraoui
AU  - Soukaina Semami
AU  - Amine El'koufi
AU  - Mohamed Aamri
TI  - On cyclic interpolative Kannan-Meir-Keeler type contraction in metric spaces
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 448
EP  - 454
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a1/
LA  - en
ID  - JSFU_2024_17_4_a1
ER  - 
%0 Journal Article
%A Mohamed Edraoui
%A Soukaina Semami
%A Amine El'koufi
%A Mohamed Aamri
%T On cyclic interpolative Kannan-Meir-Keeler type contraction in metric spaces
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 448-454
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a1/
%G en
%F JSFU_2024_17_4_a1
Mohamed Edraoui; Soukaina Semami; Amine El'koufi; Mohamed Aamri. On cyclic interpolative Kannan-Meir-Keeler type contraction in metric spaces. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 4, pp. 448-454. http://geodesic.mathdoc.fr/item/JSFU_2024_17_4_a1/

[1] E.Karapınar, “Interpolative Kannan-Meir-Keeler type contraction”, Adv. Theory Nonlinear Anal. Its App., 5 (2021), 611–614 | DOI

[2] E.Karapınar, Andreea, S.S.Yeşilkaya, “Interpolative Meir–Keeler Mappings in Modular Metric Spaces”, Mathematics, 10 (2022), 2986 | DOI

[3] E.Karapinar, “Revisiting the Kannan type contractions via interpolation”, Adv. Theory Nonlinear Anal. Appl., 2:2 (2018), 85–87 | DOI | Zbl

[4] E.Karapınar, O.Alqahtani, H.Aydi, “On Interpolative Hardy-Rogers Type Contractions”, Symmetry, 11 (2018), 8 | DOI

[5] Y.U.Gaba, E.Karapınar, “A New Approach to the Interpolative Contractions”, Axioms, 8 (2019), 110 | DOI

[6] E.Karapınar, R.P.Agarwal, “Interpolative Rus-Reich-Cirić-type contractions via simulation functions”, Analele Univ. Ovidius Constanta-Ser. Mat., 27 (2019), 137–152 | DOI | MR | Zbl

[7] E.Karapınar, R.Agarwal, H.Aydi, “Interpolative Reich–Rus–Cirić type contractions on partial metric spaces”, Mathematics, 6 (2018), 256 | DOI | Zbl

[8] E.Karapınar, A.Fulga, S.S.Yeşilkaya, “New results on Perov-Interpolative contractions of Suzuki type mappings”, J. Funct. Spaces, 2021 (2021), 9587604 | DOI | MR

[9] M.Edraoui, A.El koufi, M.Aamri, “On interpolative Hardy-Rogers type cyclic contractions”, Appl. Gen. Topol., 25:1 (2024), 117–124 | DOI | MR | Zbl

[10] E.Karapınar, “Revisiting simulation functions via interpolative contractions”, Appl. Anal. Discret. Math., 13 (2019), 859–870 | DOI | MR | Zbl

[11] E.Karapınar, A.Fulga, “Roldán López de Hierro, A.F. Fixed point theory in the setting of ($\alpha $, $\beta $, $\psi $, $ \phi $)-interpolative contractions”, Adv. Differ. Equation, 2021 (2021), 339 | DOI | MR | Zbl

[12] H.Aydi, C.M.Chen, E.Karapınar, “Interpolative Cirić-Reich-Rus type contractions via the Branciari distance”, Mathematics, 7 (2019), 84 | DOI

[13] W.A.Kirk, P.S.Srinivasan, P.Veeramani, “Fixed point fo mappings satisfyaing cyclical contractive conditions”, Fixed Point Theory, 4 (2003), 79–89 | MR | Zbl

[14] A.Meir, E.Keeler, “A theorem on contraction mappings”, J. Math. Anal. Appl., 28 (1969), 326 | DOI | MR | Zbl

[15] M.Edraoui, A El'koufi, M.Aamri, “Best Proximity point theorems for proximal pointwise tricyclic contraction”, Adv. Fixed Point Theory, 13 (2023), 22 | DOI | MR

[16] M.Edraoui, A.El koufi, S.Semami, “Fixed points results for various types of int olative cyclic contraction”, Appl. Gen. Topol., 24:2 (2023), 247–252 | DOI | MR

[17] M.Edraoui, M.Aamri, S.Lazaiz, “Fixed point theorem in locally K-convex space”, Journal of Mathematical Analysis, 12:10 (2018), 485–490 | DOI

[18] Edraoui Mohamed, Aamri Mohamed, Lazaiz Samih, “Fixed point theorem for p$\alpha $-nonexpansive wrt orbits in locally convex space”, J. Math. Comput. Sci., 1 (2020), 1582–1589

[19] E.Mohamed, A.Mohamed, L.Samih, “Relatively cyclic and noncyclic P-contractions in locally K-convex space”, Axioms, 8 (2019), 96 | DOI | Zbl

[20] M.Edraoui, A.Baiz, A.Faiz, J.Mouline, K.Bouzkoura, “Best proximity point theorems for tricyclic diametrically contractive mappings”, Adv. Fixed Point Theory, 14 (2024), 4