On periodic bilinear threshold $GARCH$ models
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 334-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

Periodic Generalized Autoregressive Conditionally Heteroscedastic ($PGARCH$) models were introduced by Bollerslev et Ghysels. These models have gained considerable interest and continued to attract the attention of researchers. This paper is devoted to extensions of the standard bilinear threshold $GARCH$ ($BLTGARCH$) model to periodically time-varying coefficients ($PBLTGARCH$) one. In this class of models, the parameters are allowed to switch between different regimes. Moreover, these models are allowed to integrate asymmetric effects in the volatility. Firstly, we give necessary and sufficient conditions ensuring the existence of stationary solutions (in periodic sense). Secondly, a quasi maximum likelihood ($QML$) estimation approach for estimating $PBLTGARCH$ model is developed. More precisely, the strong consistency and the asymptotic normality of the estimator are studied given mild regularity conditions, requiring strict stationarity and the finiteness of moments of some order for the errors term. The finite-sample properties of $QMLE$ are illustrated by a Monte Carlo study. Finally our proposed model is applied to model the exchange rates of the Algerian Dinar against the single European currency ($Euro$).
Keywords: periodic bilinear threshold $GARCH$ models, Strictly periodically stationary, Gaussian $QML$ estimator.
@article{JSFU_2024_17_3_a4,
     author = {Walid Slimani and Ines Lescheb and Mouloud Cherfaoui},
     title = {On periodic bilinear threshold $GARCH$ models},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {334--346},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a4/}
}
TY  - JOUR
AU  - Walid Slimani
AU  - Ines Lescheb
AU  - Mouloud Cherfaoui
TI  - On periodic bilinear threshold $GARCH$ models
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 334
EP  - 346
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a4/
LA  - en
ID  - JSFU_2024_17_3_a4
ER  - 
%0 Journal Article
%A Walid Slimani
%A Ines Lescheb
%A Mouloud Cherfaoui
%T On periodic bilinear threshold $GARCH$ models
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 334-346
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a4/
%G en
%F JSFU_2024_17_3_a4
Walid Slimani; Ines Lescheb; Mouloud Cherfaoui. On periodic bilinear threshold $GARCH$ models. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 334-346. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a4/

[1] A.Ghezal, QMLE for periodic time-varying asymmetric log $GARCH$ models, Communications in Mathematics and Statistics, 2021, no. 3, 273–297 | DOI | MR | Zbl

[2] A.Aknouche, H.Guerbyenne, “Periodic stationarity of random coefficient periodic autoregressions”, Stat. Prob. Lett., 79:7 (2009), 990–996 | DOI | MR | Zbl

[3] F.Hamdi, S.Souam, “Mixture periodic $GARCH$ models: Applications to exchange rate modeling”, Proceeding of the 5-th international conference on modeling, simulation and optimization, ICMSAO (Hammamet, 2013), 2013, 1-6 | MR

[4] I.Lescheb, “Asymptotic inference for periodic $ARCH$ processes”, Ran. Oper. Stoch. Equ., 19:3 (2011), 283–294 | MR | Zbl

[5] J.F.C.Kingman, Subadditive ergodic theory, The annals of probability, 1:6 (1973), 883–899 | DOI | MR

[6] M.J.Rodriguez, E.Ruiz, “Revisiting several popular $GARCH$ models with leverage effect: Differences and similarities”, Journal of Financial Econometrics, 10:4 (2012), 637–668 | DOI

[7] M.S.Choi, J.A.Park, S.Y.Hwang, “Asymmetric $GARCH$ processes featuring both threshold effect and bilinear structure”, Statistics $\$ Probability Letters, 82:3 (2012), 419–426 | DOI | MR | Zbl

[8] P.Bougerol, N.Picard, “Strict stationarity of generalized autoregressive processes”, Annals of Probability, 20:4 (1992), 1714–1730 | DOI | MR | Zbl

[9] P.H.Franses, R.Paap, “Modelling day-of-the-week seasonality in the S 500 index”, Applid Financial Economics, 10:5 (2000), 483–488 | DOI

[10] T.Bollerslev, E.Ghysels, “Periodic autoregressive conditional heteroscedasticity”, Journal of Business and Economic Statistics, 14:2 (1996), 139–151 | DOI