The weighted Hardy operators and quasi-monotone functions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 318-325
Cet article a éte moissonné depuis la source Math-Net.Ru
Some Hardy-type inequalities are established by W. T. Sulaiman. The aim of this work is to extend these inequalities for weighted Hardy operators with quasi-monotone functions. Moreover some new integral weighted inequalities were obtained.
Keywords:
inequalities, Hardy's operator, quasi-monotones functions.
@article{JSFU_2024_17_3_a2,
author = {Abdelkader Senouci and Abdelkader Zanou},
title = {The weighted {Hardy} operators and quasi-monotone functions},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {318--325},
year = {2024},
volume = {17},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a2/}
}
TY - JOUR AU - Abdelkader Senouci AU - Abdelkader Zanou TI - The weighted Hardy operators and quasi-monotone functions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 318 EP - 325 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a2/ LA - en ID - JSFU_2024_17_3_a2 ER -
%0 Journal Article %A Abdelkader Senouci %A Abdelkader Zanou %T The weighted Hardy operators and quasi-monotone functions %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 318-325 %V 17 %N 3 %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a2/ %G en %F JSFU_2024_17_3_a2
Abdelkader Senouci; Abdelkader Zanou. The weighted Hardy operators and quasi-monotone functions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 318-325. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a2/
[1] J.Bergh, V.Burenkov, L.-E.Persson, “Best constants in reversed Hardy's inequalities for quasimonotone functions”, Acta Sci. Math. (Szeged), 59 (1994), 223–241 | MR
[2] G.H.Hardy, Notes on a theorem of Hilbert, Math. Z., 6 (1920), 314–317 | DOI | MR
[3] M.L.Goldman, Hardy type inequalities on the cone of quasimonotone functions, Research Report No 98/31, Computer Center Far Eastern Branch of the Russian Academy of Sciencese, Khabarovsk, 1998, 69 pp.
[4] W.T.Sulaiman, “Hardy type inequalities”, Applied Mathematics Letters, 25 (2012), 520–525 | DOI | MR | Zbl