Finding power sums of zeros of an entire function of finite order of growth
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 427-430.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulas are given for finding power sums of zeros to a negative power for entire functions of finite order of growth.
Keywords: power sum of zeros, entire function of finite order of growth.
@article{JSFU_2024_17_3_a13,
     author = {Davlatbay Djumabaev},
     title = {Finding power sums of zeros of an entire function of finite order of growth},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {427--430},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a13/}
}
TY  - JOUR
AU  - Davlatbay Djumabaev
TI  - Finding power sums of zeros of an entire function of finite order of growth
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 427
EP  - 430
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a13/
LA  - en
ID  - JSFU_2024_17_3_a13
ER  - 
%0 Journal Article
%A Davlatbay Djumabaev
%T Finding power sums of zeros of an entire function of finite order of growth
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 427-430
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a13/
%G en
%F JSFU_2024_17_3_a13
Davlatbay Djumabaev. Finding power sums of zeros of an entire function of finite order of growth. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 427-430. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a13/

[1] E.C.Titchmarsh, The theory of functions, Oxford Univ. Press, Oxford, 1939 | MR

[2] A.I.Markushevich, The theory of analytic functions, v. 2, Nauka, M., 1968 (in Russian) | MR

[3] A.G.Kurosh, Higher Algebra, Mir, M., 1975 | MR

[4] N.Bourbaki, Algebra, v. 2, Hermann, Paris, 1961 | MR

[5] I.G.Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, New-York, 1979 | MR | Zbl

[6] A.M.Kytmanov, Algebraic and transcendental systems of equations, Siberian Federal University, Krasnoyarsk, 2019 (in Russian)