Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_3_a1, author = {Habiba Toumi and Ahmed Nouar}, title = {On the $p$-fold well-posedness of higher order abstract {Cauchy} problem}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {304--317}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a1/} }
TY - JOUR AU - Habiba Toumi AU - Ahmed Nouar TI - On the $p$-fold well-posedness of higher order abstract Cauchy problem JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 304 EP - 317 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a1/ LA - en ID - JSFU_2024_17_3_a1 ER -
%0 Journal Article %A Habiba Toumi %A Ahmed Nouar %T On the $p$-fold well-posedness of higher order abstract Cauchy problem %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2024 %P 304-317 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a1/ %G en %F JSFU_2024_17_3_a1
Habiba Toumi; Ahmed Nouar. On the $p$-fold well-posedness of higher order abstract Cauchy problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 304-317. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a1/
[1] V.Adamjan, V.I.Pivovarchik, C.Tretter, “On a class of non-selfadjoint quadratic matrix operator pencils arising in elasticity theory”, J. Operator Theory, 47:2 (2002), 325–341 | MR | Zbl
[2] H.O.Fattorini, “Extension and behavior at infinity of solutions of certain linear operational differential equations”, Pacif. J. Ma., 33:3 (1970), 583–615 | DOI | MR | Zbl
[3] A.Jeffrey, Advanced engineering mathematics, Harcourt/Academic Press, 2001 | MR
[4] L.Jin, “Integrated semi-groups and higher-order abstract equations”, J. Math. Ana. App., 222:1 (1998), 110–125 | DOI | MR | Zbl
[5] T.Kato, Perturbation theory for linear operators, Mir, M., 1972 (in Russian) | MR | Zbl
[6] T.D.Ke, V.Obukhovskii, N.-C.Wong, J.-C.Yao, “An abstract Cauchy problem for higher-order functional differential inclusions with infinite delay”, Di. Math. Ana. App., 31:2 (2011), 199–229 | DOI | MR | Zbl
[7] H.Kellermann, M.Hieber, “Integrated semigroups”, J. Funct. Anal., 84 (1989), 160–180 | DOI | MR
[8] N.Kishimoto, “Well-posedness for the Cauchy problem of the korteweg-de vries equation at the critical regularity”, Differential Integral Equations, 22:5-6 (2009), 447–464 | DOI | MR | Zbl
[9] N.D.Kopatchevsky, Spectral theory of operator pencils, V.I. Vernadsky Taurida National University, Simferopol, 2009
[10] P.Lancaster, A.Shkalikov, “Damped vibrations of beams and related spectral problems”, Can. Appl. Math. Quart., 2:1 (1994), 45–90 | MR | Zbl
[11] J.Liang, T.J.Xiao, “Well-posedness results for certain classes of higher order abstract Cauchy problems connected with integrated semigroups”, Semigroup Forum, 56 (1998), 84–103 | DOI | MR | Zbl
[12] A.I.Miloslavskii, “On the substantiation of the spectral approach to nonconservative problems of the theory of elastic stability”, Funkts. Anal. Prilozhen., 17:3 (1983), 83–84 | MR | Zbl
[13] F.Neubrander, “Well-posedness of higher order abstract Cauchy problems”, Trans. Amer. Math. Soc., 295:1 (1986), 257–290 | DOI | MR | Zbl
[14] F.Neubrander, “Integrated semigroups and their applications to the abstract Cauchy problem”, Pacif. J. Mat., 135:1 (1996), 111–155 | DOI | MR
[15] J.C.Saut, N.Tzverkov, “The Cauchy problem for of higher-order KP equations”, J. Diff. Equa., 153:5 (1998), 32–37 | MR
[16] V.I.Smirnov, Cours de mathématiques supérieures, v. V, Mir, M., 1975 | MR
[17] X.Tijun, L.Jin, “Differential operators and C-wellposedness of complete second order abstract Cauchy problems”, Pacific Journal of Mat., 186:1 (1998), 167–200 | DOI | MR | Zbl
[18] L.A.Vlasenko, A.L.Piven', A.G.Rutkas, “Criteria for the well-posedness of the Cauchy problem for differential operator equations of arbitrary order”, Ukrain. Math., 56:10 (2004), 1766–1781 | DOI | MR | Zbl
[19] L.A.Vlasenko, A.G.Rutkas, “Uniquenss and approximation theorems for a degenerate operator-differential equation”, Mathematical Notes, 60:4 (1996), 445-449 | DOI | MR | Zbl