On the $p$-fold well-posedness of higher order abstract Cauchy problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 304-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish sufficient conditions for the $p$-fold well-posedness of higher-order abstract Cauchy problem. These conditions are expressed in terms of decay of some auxiliary pencils derived from the characteristic pencil for the operational differential equation considered. In particular, this paper improves important and interesting work.
Keywords: abstract Cauchy problems, integrated semi-groups, well-posedness.
@article{JSFU_2024_17_3_a1,
     author = {Habiba Toumi and Ahmed Nouar},
     title = {On the $p$-fold well-posedness of higher order abstract {Cauchy} problem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {304--317},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a1/}
}
TY  - JOUR
AU  - Habiba Toumi
AU  - Ahmed Nouar
TI  - On the $p$-fold well-posedness of higher order abstract Cauchy problem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 304
EP  - 317
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a1/
LA  - en
ID  - JSFU_2024_17_3_a1
ER  - 
%0 Journal Article
%A Habiba Toumi
%A Ahmed Nouar
%T On the $p$-fold well-posedness of higher order abstract Cauchy problem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 304-317
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a1/
%G en
%F JSFU_2024_17_3_a1
Habiba Toumi; Ahmed Nouar. On the $p$-fold well-posedness of higher order abstract Cauchy problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 3, pp. 304-317. http://geodesic.mathdoc.fr/item/JSFU_2024_17_3_a1/

[1] V.Adamjan, V.I.Pivovarchik, C.Tretter, “On a class of non-selfadjoint quadratic matrix operator pencils arising in elasticity theory”, J. Operator Theory, 47:2 (2002), 325–341 | MR | Zbl

[2] H.O.Fattorini, “Extension and behavior at infinity of solutions of certain linear operational differential equations”, Pacif. J. Ma., 33:3 (1970), 583–615 | DOI | MR | Zbl

[3] A.Jeffrey, Advanced engineering mathematics, Harcourt/Academic Press, 2001 | MR

[4] L.Jin, “Integrated semi-groups and higher-order abstract equations”, J. Math. Ana. App., 222:1 (1998), 110–125 | DOI | MR | Zbl

[5] T.Kato, Perturbation theory for linear operators, Mir, M., 1972 (in Russian) | MR | Zbl

[6] T.D.Ke, V.Obukhovskii, N.-C.Wong, J.-C.Yao, “An abstract Cauchy problem for higher-order functional differential inclusions with infinite delay”, Di. Math. Ana. App., 31:2 (2011), 199–229 | DOI | MR | Zbl

[7] H.Kellermann, M.Hieber, “Integrated semigroups”, J. Funct. Anal., 84 (1989), 160–180 | DOI | MR

[8] N.Kishimoto, “Well-posedness for the Cauchy problem of the korteweg-de vries equation at the critical regularity”, Differential Integral Equations, 22:5-6 (2009), 447–464 | DOI | MR | Zbl

[9] N.D.Kopatchevsky, Spectral theory of operator pencils, V.I. Vernadsky Taurida National University, Simferopol, 2009

[10] P.Lancaster, A.Shkalikov, “Damped vibrations of beams and related spectral problems”, Can. Appl. Math. Quart., 2:1 (1994), 45–90 | MR | Zbl

[11] J.Liang, T.J.Xiao, “Well-posedness results for certain classes of higher order abstract Cauchy problems connected with integrated semigroups”, Semigroup Forum, 56 (1998), 84–103 | DOI | MR | Zbl

[12] A.I.Miloslavskii, “On the substantiation of the spectral approach to nonconservative problems of the theory of elastic stability”, Funkts. Anal. Prilozhen., 17:3 (1983), 83–84 | MR | Zbl

[13] F.Neubrander, “Well-posedness of higher order abstract Cauchy problems”, Trans. Amer. Math. Soc., 295:1 (1986), 257–290 | DOI | MR | Zbl

[14] F.Neubrander, “Integrated semigroups and their applications to the abstract Cauchy problem”, Pacif. J. Mat., 135:1 (1996), 111–155 | DOI | MR

[15] J.C.Saut, N.Tzverkov, “The Cauchy problem for of higher-order KP equations”, J. Diff. Equa., 153:5 (1998), 32–37 | MR

[16] V.I.Smirnov, Cours de mathématiques supérieures, v. V, Mir, M., 1975 | MR

[17] X.Tijun, L.Jin, “Differential operators and C-wellposedness of complete second order abstract Cauchy problems”, Pacific Journal of Mat., 186:1 (1998), 167–200 | DOI | MR | Zbl

[18] L.A.Vlasenko, A.L.Piven', A.G.Rutkas, “Criteria for the well-posedness of the Cauchy problem for differential operator equations of arbitrary order”, Ukrain. Math., 56:10 (2004), 1766–1781 | DOI | MR | Zbl

[19] L.A.Vlasenko, A.G.Rutkas, “Uniquenss and approximation theorems for a degenerate operator-differential equation”, Mathematical Notes, 60:4 (1996), 445-449 | DOI | MR | Zbl