Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2024_17_2_a0, author = {Ahlem Benraouda}, title = {Optimal control for an elastic frictional contact problem}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {151--161}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a0/} }
TY - JOUR AU - Ahlem Benraouda TI - Optimal control for an elastic frictional contact problem JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2024 SP - 151 EP - 161 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a0/ LA - en ID - JSFU_2024_17_2_a0 ER -
Ahlem Benraouda. Optimal control for an elastic frictional contact problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 151-161. http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a0/
[1] C.Baiocchi, A.Capelo, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems, John Wiley, Chichester, 1984 | MR | Zbl
[2] V.Barbu, Optimal Control of Variational Inequalities, Pitman Advanced Publishing, Boston, 1984 | MR | Zbl
[3] H.Brézis, “Equations et inéquations non linéaires dans les espaces vectoriels en dualité”, Ann. Inst. Fourier (Grenoble), 18 (1968), 115–175 | DOI | MR | Zbl
[4] A.Capatina, Variational Inequalities and Frictional Contact Problems, Advances in Mechanics and Mathematics, 31, Springer, New York, 2014 | DOI | MR | Zbl
[5] A.Friedman, “Optimal control for variational inequalities”, SIAM J. Control Optim., 24:3 (1986), 439–451 | DOI | MR | Zbl
[6] W.Han, M.Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, Americal Mathematical Society, Providence, RI, 2002 | DOI | MR | Zbl
[7] I.Hlaváček, J Haslinger, J.Nečas, J.Lovíšek, Solution of Variational Inequalities in Mechanics, Springer-Verlag, New York, 1988 | MR | Zbl
[8] N.Kikuchi, J.T.Oden, “Theory of variational inequalities with applications to problems of flow through porous media”, Int. J. Engng. Sci., 18 (1980), 1173–1284 | DOI | MR | Zbl
[9] T.A.Laursen, Computational Contact and Impact Mechanics, Springer, Berlin, 2002 | MR | Zbl
[10] J.-L.Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Gauthiers-Villars, Paris, 1969 | MR
[11] R.Mignot, J.P.Puel, “Optimal control in some variational inequalities”, SIAM J. Control Optim., 22 (1984), 466–476 | DOI | MR | Zbl
[12] S.Migórski, A.Ochal, M.Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26, Springer, New York, 2013 | DOI | MR | Zbl
[13] M.Shillor, M.Sofonea, J.J.Telega, Models and Analysis of Quasistatic Contact, Lect. Notes Phys., 655, Springer, Berlin, 2004 | DOI | Zbl
[14] M.Sofonea, A.Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, 2012 | Zbl
[15] M.Sofonea, S.Migórski, Variational Hemivariational Inequalities with Applications, Chapman and Hall/CRC, New York, 2017 | MR
[16] A.Touzaline, “Optimal control of a frictional contact problem”, Acta Mathematicae Applicatae Sinica, English Series, 31 (2015), 991–1000 | DOI | MR | Zbl
[17] E.Zeidler, Nonlinear Functional Analysis and its Applications, v. IV, Applications to Mathematical Physics, Springer-Verlag, New York | MR