Optimal control for an elastic frictional contact problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 151-161

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model which describes a frictional contact between an elastic body and a foundation. We prove the existence of a unique weak solution to the problem. Then, we study the continuous dependence of the solution with respect to the data. Finally, we address an optimal control problem for which we prove the existence of at least one solution.
Keywords: weak solution, continuous dependence, lower semicontinuity, optimal control.
Mots-clés : Coulomb's friction
@article{JSFU_2024_17_2_a0,
     author = {Ahlem Benraouda},
     title = {Optimal control for an elastic frictional contact problem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {151--161},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a0/}
}
TY  - JOUR
AU  - Ahlem Benraouda
TI  - Optimal control for an elastic frictional contact problem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 151
EP  - 161
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a0/
LA  - en
ID  - JSFU_2024_17_2_a0
ER  - 
%0 Journal Article
%A Ahlem Benraouda
%T Optimal control for an elastic frictional contact problem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 151-161
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a0/
%G en
%F JSFU_2024_17_2_a0
Ahlem Benraouda. Optimal control for an elastic frictional contact problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 2, pp. 151-161. http://geodesic.mathdoc.fr/item/JSFU_2024_17_2_a0/