Numerical schemes of higher approximation orders for dynamic problems of elastoviscoplastic media
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 1, pp. 8-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a stable numerical solution of the constitutive system of an elastoviscoplastic model of a continuous medium with the von Mises yield condition and hardening, an explicit-implicit second-order scheme was proposed. It includes explicit approximation of the equations of motion and implicit approximation of the constitutive relations containing a small relaxation time parameter in the denominator of the non-linear free term. To match the approximation orders of the explicit elastic and implicit corrective steps, an implicit second-order approximation was constructed for isotropic elastoviscoplastic medium with hardening model. The obtained solutions with the second-order implicit approximation of the stress deviators of the elastoviscoplastic system of equations allow limiting case when relaxation time tends to zero. Correction formulas were obtained in this case, and they can be interpreted as regularizers of numerical solutions for elastoplastic systems with hardening.
Keywords: numerical simulation, elastoviscoplastic media, semi-linear hyperbolic systems, explicit-implicit schemes of higher orders.
@article{JSFU_2024_17_1_a1,
     author = {Vasily I. Golubev and Ilia S. Nikitin and Xi Mi},
     title = {Numerical schemes of higher approximation orders for dynamic problems of elastoviscoplastic media},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {8--17},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a1/}
}
TY  - JOUR
AU  - Vasily I. Golubev
AU  - Ilia S. Nikitin
AU  - Xi Mi
TI  - Numerical schemes of higher approximation orders for dynamic problems of elastoviscoplastic media
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2024
SP  - 8
EP  - 17
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a1/
LA  - en
ID  - JSFU_2024_17_1_a1
ER  - 
%0 Journal Article
%A Vasily I. Golubev
%A Ilia S. Nikitin
%A Xi Mi
%T Numerical schemes of higher approximation orders for dynamic problems of elastoviscoplastic media
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2024
%P 8-17
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a1/
%G en
%F JSFU_2024_17_1_a1
Vasily I. Golubev; Ilia S. Nikitin; Xi Mi. Numerical schemes of higher approximation orders for dynamic problems of elastoviscoplastic media. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 17 (2024) no. 1, pp. 8-17. http://geodesic.mathdoc.fr/item/JSFU_2024_17_1_a1/

[1] P.Pezhina, Basic issues of viscoplasticity (Osnovnie voprosi vyazkoplastichnosti), Mir, M., 1968 (in Russian)

[2] V.N.Kukudzhanov, Computational continuum mechanics (Vichislitelnaya mechanica sploshnikh sred), Fizmatlit, M., 2008 (in Russian) | MR

[3] V.K.Novatskiy, Computational continuum mechanics (Vichislitelnaya mechanica sploshnikh sred), Mir, M., 1978 (in Russian)

[4] A.Freidental, Kh.Geiringer, Mathematical theories of inelastic continuum (Matematicheskie teorii neuprugoy sploshnoy sredi), Fizmatgiz, M., 1962 (in Russian)

[5] V.N.Kukudzhanov, “Rasprostranenie voln dv uprugovyazkoplasticheskih materialah s diagrammoi obchego vida”, Mehanika Tverdogo Tela, 5 (2001), 96–111 (in Russian)

[6] D.Kolarov, A.Baltov, N.Boncheva, Mechanics of plastic media (Mehanika plasticheskih sred), Mir, M., 1979 (in Russian)

[7] G.Duvo, N.Lions, Inequalities in mechanics and physics (Neravenstva v mechanike i fizike), Nauka, M., 1980 (in Russian) | MR

[8] V.M.Sadovskii, Discontinuous solutions in problems of dynamics of elastoplastic media (Razrivnie recheniya v zadachah dinamiki uprugoplasticheskih sred), Nauka, M., 1997 (in Russian) | MR

[9] A.G.Kulikovskii, N.V.Pogorelov, A.Yu.Semenov, Mathematical issues of numerical solution of hyperbolic systems of equations (Matematicheskie voprosi chislennogo resheniya giperbolicheskih system uravnenii), Fizmatlit, M., 2001 (in Russian)

[10] M.L.Wilkins, “Calculation of elastoplastic flows”, Computational methods in hydrodynamics (Raschet uprugoplasticheskih techenii. Vichislitelnie metodi v gidrodinamike), Mir, M., 1967, 163–212 (in Russian)

[11] M.L.Wilkins, Computer simulation of dynamic phenomena, Springer, Berlin-Heidelberg-New-York, 1999 | MR | Zbl

[12] V.N.Kukudzhanov, “Method for splitting elastoplastic equations (Metod rascheppleniya uprugoplasticheskih uravneniy)”, Mechanika tverdogo tela, 1 (2004), 98–108 (in Russian)

[13] M.Kh.Abuzyarov, V.G.Bazhenov, V.L.Kotov, A.V Kochetkov, S.V.Krylov, V.R.Feldgun, “The method of the decay of discontinuities in the dynamics of elastoplastic media”, Comput. Math. Math. Phys., 40:6 (2000), 900–913 | MR | Zbl

[14] B.D.Annin, V.M.Sadovskii, “On the numerical realization of a variational inequality in problems of the dynamics of elastoplastic bodies”, Comput. Math. Math. Phys., 36:9 (1996), 1313–1324 | MR | Zbl

[15] N.G.Burago, “Modeling the destruction of elastoplastic bodies (Modelirovanie razrusheniya uprugoplasticheskih tel)”, Computational continuum mechanics, 1:4 (2008), 5–20 (in Russian) | DOI | MR

[16] V.I.Golubev, A.V.Shevchenko, I.B.Petrov, “Raising convergence order of grid-characteristic schemes for 2D linear elasticity problems using operator splitting”, Computer Research and Modeling, 14:4 (2022), 899–910 | DOI | MR

[17] I.B.Petrov, V.I.Golubev, A.V.Shevchenko, “Higher-Order Grid-Characteristic Schemes for the Acoustic System”, Proceedings – 2021 Ivannikov Memorial Workshop, IVMEM 2021, 2021, 61–65

[18] V.I.Golubev, A.V.Shevchenko, N.I Khokhlov, I.B.Petrov, M.S.Malovichko, “Compact Grid-Characteristic Scheme for the Acoustic System with the Piece-Wise Constant Coefficients”, International Journal of Applied Mechanics, 2022, 2250002 | DOI

[19] A.S.Kholodov, “Construction of difference schemes with positive approximation for hyperbolic equations”, USSR Computational Mathematics and Mathematical Physics, 18:6 (1978), 116–132 | DOI | MR

[20] V.I.Golubev, I.S Nikitin, A.V.Vasyukov, A.D.Nikitin, “Fractured inclusion localization and characterization based on deep convolutional neural networks”, Procedia Structural Integrity, 43 (2023), 29–34 | DOI