On the non-standard interpolations in $\mathbb{C}^n$ and combinatorial coefficients for Weil polyhedra
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 758-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

Multidimensional non-standard interpolation has been recently presented in an article by D. Alpay and A. Yger. We are talking about algebraic interpolation where discrete roots of a system of polynomial equations serve as nodes. With the help of the Grothendieck residue duality, the problem of describing the desired interpolation space of functions is reduced to solving the affine-bilinear equation. To implement this reduction, algorithms for calculating local Grothendieck residues or their sums are required. In a fairly general situation, the calculation of these residues is based on the well-known Gelfond–Khovanskii formula. This article provides examples of calculating local residues or their sums. In 2-dimensional case we generalise the Gelfond–Khovanskii formula for Newton polyhedra that are not in the unfolded position. This is done using the concept of an amoeba of an algebraic set and the notion of an homological resolvent for the boundary of Weil polyhedron.
Keywords: Grothendieck residue, amoeba, Homological resolvent.
Mots-clés : interpolation
@article{JSFU_2023_16_6_a5,
     author = {Matvey E. Durakov and Roman V. Ulvert and August K. Tsikh},
     title = {On the non-standard interpolations in $\mathbb{C}^n$ and combinatorial coefficients for {Weil} polyhedra},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {758--772},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a5/}
}
TY  - JOUR
AU  - Matvey E. Durakov
AU  - Roman V. Ulvert
AU  - August K. Tsikh
TI  - On the non-standard interpolations in $\mathbb{C}^n$ and combinatorial coefficients for Weil polyhedra
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 758
EP  - 772
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a5/
LA  - en
ID  - JSFU_2023_16_6_a5
ER  - 
%0 Journal Article
%A Matvey E. Durakov
%A Roman V. Ulvert
%A August K. Tsikh
%T On the non-standard interpolations in $\mathbb{C}^n$ and combinatorial coefficients for Weil polyhedra
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 758-772
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a5/
%G en
%F JSFU_2023_16_6_a5
Matvey E. Durakov; Roman V. Ulvert; August K. Tsikh. On the non-standard interpolations in $\mathbb{C}^n$ and combinatorial coefficients for Weil polyhedra. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 758-772. http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a5/

[1] D.Alpay, P.Jorgensen, I.Lewkowicz, D.Volok, “A new realization of rational functions, with applications to linear combination interpolation, the Cuntz relations and kernel decompositions”, Complex Var. Elliptic Equ., 61:1 (2016), 42–54

[2] D.Alpay, A.Yger, “About a Non-Standard Interpolation Problem”, Comput. Methods Funct. Theory, 19 (2019), 97–115 | DOI

[3] D.Alpay, A.Yger, “Cauchy-Weil formula, Schur-Agler type classes, new Hardy spaces of the polydisk and interpolation problems”, Journal of Mathematical Analysis and Applications, 504:2 (2021), 125437 | DOI

[4] A.Tsikh, Multidimensional Residues and Their Applications (English summary), Translated from the 1988 Russian original by E. J. F. Primrose, Translations of Mathematical Monographs, 103, American Mathematical Society, Providence, RI, 1992

[5] P.Griffiths, J.Harris, Principles of Algebraic Geometry, Wiley Interscience, New York, 1978

[6] B. Van der Waerden, Algebra, Based in part on lectures by E. Artin and E. Noether. Translated from the seventh German edition by Fred Blum and John R. Schulenberger, v. I, Springer-Verlag, New York, 1991

[7] I.Aizenberg, A.Yuzhakov, Integral representations and residues in multidimensional complex analysis, Translated from the Russian by H. H. McFaden. Translation edited by Lev J. Leifman, Translations of Mathematical Monographs, 58, American Mathematical Society, Providence, RI, 1983

[8] E.Leinartas, A.Tsikh, “On a Multidimentional Version of the Principal Theorem of Difference Equations with constant Coeffitients”, J. of Siberian Federal University. Math and Phys., 1:1 (2022), 125–132 | DOI

[9] S.Tajima, K.Nabeshima, “Computing Grothendieck point residues via solving holonomic systems of first order partial differential equations”, ISSAC `21 Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation, 361–368

[10] J.Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, 61, Prinston, New Jersey, 1968

[11] A.Tsikh, A.Yger, “Residue currents”, Complex analysis. J. Math. Sci. (N.Y.), 120:6 (2004), 1916–1971 | DOI

[12] I.Gel'fand, A.Zelevinskii, M.Kapranov, “Hypergeometric functions and toral manifolds”, Funct Anal Its Appl., 23 (1989), 94–106

[13] M.Forsberg, M.Passare, A.Tsikh, “Laurent Determinants and Arrangements of Hyperplane Amoebas”, Advances in Mathematics, 151 (2000), 45–70 | DOI

[14] Springer-Verlag

[15] L.Ehrenpreis, Fourier analysis in several complex variables, Wiley–Interscience Publishers, 1970

[16] O.Gelfond, A.Khovanskii, “Toric geometry and Grothendieck residues”, Mosc. Math. J., 2:1 (2002), 99–112 | DOI

[17] A. Gleason, “The Cauchy–Weil theorem”, J. Math. Mech., 12:3 (1963), 429–444