Mellin transforms for rational functions with quasi-elliptic denominators
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 738-750

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with residue representations of $n$–dimensional Mellin transforms for rational functions with quasi-elliptic denominators. These representations are given by integrals over $(n-1)$-dimensional relative cycles. The amount of representations (or cycles) equals to the number of facets of the Newton polytope for the denominator of the rational function.
Keywords: multidimensional Mellin transform, amoeba.
Mots-clés : quasi-elliptic polynomial, Leray residue form
@article{JSFU_2023_16_6_a3,
     author = {Irina A. Antipova and Timofey A. Efimov and Avgust K. Tsikh},
     title = {Mellin transforms for rational functions with quasi-elliptic denominators},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {738--750},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/}
}
TY  - JOUR
AU  - Irina A. Antipova
AU  - Timofey A. Efimov
AU  - Avgust K. Tsikh
TI  - Mellin transforms for rational functions with quasi-elliptic denominators
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 738
EP  - 750
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/
LA  - en
ID  - JSFU_2023_16_6_a3
ER  - 
%0 Journal Article
%A Irina A. Antipova
%A Timofey A. Efimov
%A Avgust K. Tsikh
%T Mellin transforms for rational functions with quasi-elliptic denominators
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 738-750
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/
%G en
%F JSFU_2023_16_6_a3
Irina A. Antipova; Timofey A. Efimov; Avgust K. Tsikh. Mellin transforms for rational functions with quasi-elliptic denominators. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 738-750. http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/