Mellin transforms for rational functions with quasi-elliptic denominators
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 738-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with residue representations of $n$–dimensional Mellin transforms for rational functions with quasi-elliptic denominators. These representations are given by integrals over $(n-1)$-dimensional relative cycles. The amount of representations (or cycles) equals to the number of facets of the Newton polytope for the denominator of the rational function.
Keywords: multidimensional Mellin transform, amoeba.
Mots-clés : quasi-elliptic polynomial, Leray residue form
@article{JSFU_2023_16_6_a3,
     author = {Irina A. Antipova and Timofey A. Efimov and Avgust K. Tsikh},
     title = {Mellin transforms for rational functions with quasi-elliptic denominators},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {738--750},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/}
}
TY  - JOUR
AU  - Irina A. Antipova
AU  - Timofey A. Efimov
AU  - Avgust K. Tsikh
TI  - Mellin transforms for rational functions with quasi-elliptic denominators
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 738
EP  - 750
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/
LA  - en
ID  - JSFU_2023_16_6_a3
ER  - 
%0 Journal Article
%A Irina A. Antipova
%A Timofey A. Efimov
%A Avgust K. Tsikh
%T Mellin transforms for rational functions with quasi-elliptic denominators
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 738-750
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/
%G en
%F JSFU_2023_16_6_a3
Irina A. Antipova; Timofey A. Efimov; Avgust K. Tsikh. Mellin transforms for rational functions with quasi-elliptic denominators. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 738-750. http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/

[1] I.A.Antipova, “Inversion of many-dimensional Mellin transforms and solutions of algebraic equations”, Sb. Math., 198:4 (2007), 447–463 | DOI

[2] C.Berkesch, J.Forsgård, M.Passare, “Euler-Mellin Integrals and A-Hypergeometric Functions”, Michigan Math. J., 63 (2014), 101–123

[3] T.O.Ermolaeva, A.K.Tsikh, “Integration of rational functions over ${\mathbb R}^n$ by means of toric compactifications and multidimensional residues”, Sb. Math., 187:9 (1996), 1301–1318 | DOI

[4] P.Flajolet, X.Gourdon, P.Dumas, “Mellin transforms and asymptotics: Harmonic sums”, Theoret. Comput. Sci., 144 (1995), 3–58 | DOI

[5] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. Math., 151 (2000), 45–70 | DOI

[6] L. Hörmander, “On the theory of general partial differential operators”, Acta Math., 94 (1955), 161–248

[7] R.P.Klausen, “Hypergeometric series representations of Feynman integrals by GKZ hypergeometric systems”, J. High Energ. Phys., 2020 (2020), 121 | DOI

[8] R.P.Klausen, “Kinematic singularities of Feynman integrals and principal A-determinants”, J. High Energ. Phys., 2022 (2022), 4 | DOI

[9] L. Nilsson, M. Passare, “Mellin transform of multivariate rational functions”, Journal of Geometric Analysis, 23 (2013), 24–46 | DOI

[10] L. Nilsson, M. Passare, A.K. Tsikh, “Domains of convergence for A-hypergeometric series and integrals”, J. Sib. Fed. Univ. Math. Phys., 12:4 (2019), 509–529 | DOI

[11] M. Passare, A.K. Tsikh, O.N. Zhdanov, “A multidimensional Jordan residue lemma with an application to Mellin-Barnes integrals”, Aspects Math. E, 26 (1994), 233–241

[12] M. Passare, A. Tsikh, “Amoebas: Their spines and their contours”, Contemporary Math., 377, 2005, 275–288 | DOI

[13] T.M.Sadykov, A.K.Tsikh, Gipergeometricheskie i algebraicheskie funktsii mnogikh peremennykh, Nauka, M., 2014 (in Russian)