Mellin transforms for rational functions with quasi-elliptic denominators
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 738-750
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with residue representations of $n$–dimensional Mellin transforms for rational functions with quasi-elliptic denominators. These representations are given by integrals over $(n-1)$-dimensional relative cycles. The amount of representations (or cycles) equals to the number of facets of the Newton polytope for the denominator of the rational function.
Keywords:
multidimensional Mellin transform, amoeba.
Mots-clés : quasi-elliptic polynomial, Leray residue form
Mots-clés : quasi-elliptic polynomial, Leray residue form
@article{JSFU_2023_16_6_a3,
author = {Irina A. Antipova and Timofey A. Efimov and Avgust K. Tsikh},
title = {Mellin transforms for rational functions with quasi-elliptic denominators},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {738--750},
publisher = {mathdoc},
volume = {16},
number = {6},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/}
}
TY - JOUR AU - Irina A. Antipova AU - Timofey A. Efimov AU - Avgust K. Tsikh TI - Mellin transforms for rational functions with quasi-elliptic denominators JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 738 EP - 750 VL - 16 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/ LA - en ID - JSFU_2023_16_6_a3 ER -
%0 Journal Article %A Irina A. Antipova %A Timofey A. Efimov %A Avgust K. Tsikh %T Mellin transforms for rational functions with quasi-elliptic denominators %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 738-750 %V 16 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/ %G en %F JSFU_2023_16_6_a3
Irina A. Antipova; Timofey A. Efimov; Avgust K. Tsikh. Mellin transforms for rational functions with quasi-elliptic denominators. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 738-750. http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/