Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_6_a3, author = {Irina A. Antipova and Timofey A. Efimov and Avgust K. Tsikh}, title = {Mellin transforms for rational functions with quasi-elliptic denominators}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {738--750}, publisher = {mathdoc}, volume = {16}, number = {6}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/} }
TY - JOUR AU - Irina A. Antipova AU - Timofey A. Efimov AU - Avgust K. Tsikh TI - Mellin transforms for rational functions with quasi-elliptic denominators JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 738 EP - 750 VL - 16 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/ LA - en ID - JSFU_2023_16_6_a3 ER -
%0 Journal Article %A Irina A. Antipova %A Timofey A. Efimov %A Avgust K. Tsikh %T Mellin transforms for rational functions with quasi-elliptic denominators %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 738-750 %V 16 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/ %G en %F JSFU_2023_16_6_a3
Irina A. Antipova; Timofey A. Efimov; Avgust K. Tsikh. Mellin transforms for rational functions with quasi-elliptic denominators. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 738-750. http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a3/
[1] I.A.Antipova, “Inversion of many-dimensional Mellin transforms and solutions of algebraic equations”, Sb. Math., 198:4 (2007), 447–463 | DOI
[2] C.Berkesch, J.Forsgård, M.Passare, “Euler-Mellin Integrals and A-Hypergeometric Functions”, Michigan Math. J., 63 (2014), 101–123
[3] T.O.Ermolaeva, A.K.Tsikh, “Integration of rational functions over ${\mathbb R}^n$ by means of toric compactifications and multidimensional residues”, Sb. Math., 187:9 (1996), 1301–1318 | DOI
[4] P.Flajolet, X.Gourdon, P.Dumas, “Mellin transforms and asymptotics: Harmonic sums”, Theoret. Comput. Sci., 144 (1995), 3–58 | DOI
[5] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. Math., 151 (2000), 45–70 | DOI
[6] L. Hörmander, “On the theory of general partial differential operators”, Acta Math., 94 (1955), 161–248
[7] R.P.Klausen, “Hypergeometric series representations of Feynman integrals by GKZ hypergeometric systems”, J. High Energ. Phys., 2020 (2020), 121 | DOI
[8] R.P.Klausen, “Kinematic singularities of Feynman integrals and principal A-determinants”, J. High Energ. Phys., 2022 (2022), 4 | DOI
[9] L. Nilsson, M. Passare, “Mellin transform of multivariate rational functions”, Journal of Geometric Analysis, 23 (2013), 24–46 | DOI
[10] L. Nilsson, M. Passare, A.K. Tsikh, “Domains of convergence for A-hypergeometric series and integrals”, J. Sib. Fed. Univ. Math. Phys., 12:4 (2019), 509–529 | DOI
[11] M. Passare, A.K. Tsikh, O.N. Zhdanov, “A multidimensional Jordan residue lemma with an application to Mellin-Barnes integrals”, Aspects Math. E, 26 (1994), 233–241
[12] M. Passare, A. Tsikh, “Amoebas: Their spines and their contours”, Contemporary Math., 377, 2005, 275–288 | DOI
[13] T.M.Sadykov, A.K.Tsikh, Gipergeometricheskie i algebraicheskie funktsii mnogikh peremennykh, Nauka, M., 2014 (in Russian)