On the closedness of carpets of additive subgroups associated with a Chevalley group over a commutative ring
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 732-737.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{A}=\{\mathfrak{A}_r\ |\ r\in \Phi\}$ be a carpet of additive subgroups of type $\Phi$ over an arbitrary commutative ring $K$. A sufficient condition for the carpet $\mathfrak{A}$ to be closed is established. As a corollary, we obtain a positive answer to question 19.63 from the Kourovka notebook and a confirmation of one conjecture by V. M. Levchuk, provided that the type of $\Phi$ is different from $C_l$, $l\geqslant 5$ when the characteristic of the ring $K$ is $0$ or $2m$ for some natural number $m>1$. Also, a partial answer to question 19.62 has been obtained.
Keywords: Lie algebra and ring, Chevalley group, commutative ring, carpet of additive subgroups, carpet subgroup.
@article{JSFU_2023_16_6_a2,
     author = {Yakov N. Nuzhin},
     title = {On the closedness of carpets of additive subgroups associated with a {Chevalley} group over a commutative ring},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {732--737},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a2/}
}
TY  - JOUR
AU  - Yakov N. Nuzhin
TI  - On the closedness of carpets of additive subgroups associated with a Chevalley group over a commutative ring
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 732
EP  - 737
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a2/
LA  - en
ID  - JSFU_2023_16_6_a2
ER  - 
%0 Journal Article
%A Yakov N. Nuzhin
%T On the closedness of carpets of additive subgroups associated with a Chevalley group over a commutative ring
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 732-737
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a2/
%G en
%F JSFU_2023_16_6_a2
Yakov N. Nuzhin. On the closedness of carpets of additive subgroups associated with a Chevalley group over a commutative ring. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 732-737. http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a2/

[1] V. D. Mazurov, E. I. Khukhro (eds.), Unsolved problems in group theory, The Kourovka notebook, 20, Sobolev Institute of Mathematics, Novosibirsk, 2022

[2] R.Steinberg, Lectures on Chevalley groups, Yale University, 1967

[3] V.M.Levchuk, “On generating sets of root elements of Chevalley groups over a field”, Algebra i Logika, 22:5 (1983), 504–517 (in Russian)

[4] V.M.Levchuk, “Parabolic subgroups of certain $ABA$-groups”, Mathematical Notes, 31:4 (1982), 509–525

[5] A.K.Gutnova, V.A.Koibaev, “On sufficient conditions for closure elementary network”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7(65):2 (2020), 230–235 (in Russian)

[6] P.S.Badin, Ya.N.Nuzhin, E.N.Troyanskaya, “On weakly supplemented carpets of lie type over commutative rings”, Vladikavkaz Math. J., 23:4 (2021), 28–34 (in Russian) | DOI

[7] Ya.N.Nuzhin, “Lie rings defined by the root system and family of additive subgroups of the initial ring”, Proc. Steklov Inst. Math., 283:1, Suppl. 1 (2013), 119–125 | DOI

[8] R.W Carter, Simple groups of lie type, Wiley and Sons, London–New York–Sydney–Toronto, 1972

[9] Ya.N.Nuzhin, A.V.Stepanov, “Subgroups of Chevalley groups of types $B_l$ and $C_l$ containing the group over a subring, and corresponding carpets”, St. Petersburg Math. J., 31:4 (2020), 719–737 | DOI

[10] Ya.N.Nuzhin, “Factorization of carpet subgroups of the Chevalley groups over commutative rings”, Journal of Siberian Federal University. Mathematics $\$ Physics, 4:4 (2011), 527–535 (in Russian)

[11] V.A.Koibaev, “Nets associated with the elementary nets”, Vladikavkaz Math. J., 12:4 (2010), 39–43 (in Russian)