Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_6_a0, author = {Olga V. Kravtsova and Daria S. Skok}, title = {Linear autotopism subgroups of semifield projective planes}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {705--719}, publisher = {mathdoc}, volume = {16}, number = {6}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a0/} }
TY - JOUR AU - Olga V. Kravtsova AU - Daria S. Skok TI - Linear autotopism subgroups of semifield projective planes JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 705 EP - 719 VL - 16 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a0/ LA - en ID - JSFU_2023_16_6_a0 ER -
%0 Journal Article %A Olga V. Kravtsova %A Daria S. Skok %T Linear autotopism subgroups of semifield projective planes %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 705-719 %V 16 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a0/ %G en %F JSFU_2023_16_6_a0
Olga V. Kravtsova; Daria S. Skok. Linear autotopism subgroups of semifield projective planes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 6, pp. 705-719. http://geodesic.mathdoc.fr/item/JSFU_2023_16_6_a0/
[1] D.R.Hughes, F.C.Piper, Projective planes, Springer–Verlag Publ, New-York, 1973
[2] V.D.Mazurov, E.I.Khukhro (eds.), Unsolved Problems in Group Theory, The Kourovka Notebook, 19, Sobolev Inst. Math. Publ., Novosibirsk, 2018
[3] M. Biliotti, V. Jha, N.L. Johnson, G. Menichetti, “A structural theory for two-dimensional translation planes of order $q^2$ that admit collineation groups of order $q^2$”, Geom. Dedicata, 29 (1989), 7–43
[4] O.V.Kravtsova, “Semifield planes of even order that admit the Baer involution”, The Bulletin of Irkutsk State University. Series Mathematics, 6:2 (2013), 26–37 (in Russian)
[5] O.V.Kravtsova, “Semifield planes of odd order that admit a subgroup of autotopisms isomorphic to $A_4$”, Russian Mathematics, 60:9 (2016), 7–22 | DOI
[6] N.D.Podufalov, “On spread sets and collineations of projective planes, part 1”, Contem. Math., 131, 1992, 697–705
[7] O.V.Kravtsova, “Elementary abelian 2-subgroups in an autotopism group of a semifield projective plane”, The Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 49–63 | DOI
[8] O.V.Kravtsova, “Dihedral group of order 8 in an autotopism group of a semifield projective plane of odd order”, Journal of Siberian Federal University. Mathematics $\$ Physics, 15:3 (2022), 21–27
[9] O.V.Kravtsova, D.S.Skok, “The spread set method for the construction of finite quasifields”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 1, 2022, 164–181 (in Russian) | DOI
[10] H.Luneburg, Translation planes, Springer-Verlag Publ, New-York, 1980
[11] O.V.Kravtsova, “On automorphisms of semifields and semifield planes”, Siberian Electronic Mathematical Reports, 13 (2016), 1300–1313 | DOI
[12] N.D.Podufalov, B.K.Durakov, O.V.Kravtsova, E.B.Durakov, “On the semifield planes of order $16^2$”, Siberian Mathematical Journal, 37:3 (1996), 616–623 (in Russian)
[13] G.E.Moorhouse, “$PSL(2,q)$ as a collineation group of projective planes of small orders”, Geom. Dedicata, 31:1 (1989), 63–88
[14] O.V.Kravtsova, “2-elements in an autotopism group of a semifield projective plane”, The Bulletin of Irkutsk State University. Series Mathematics, 39 (2022), 96–110 | DOI
[15] M.J.Ganley, “Baer involutions in semi-field planes of even order”, Geom. Dedicata, 2 (1974), 499–508
[16] N.D.Podufalov, B.K.Durakov, I.V.Busarkina, O.V.Kravtsova, E.B.Durakov, “Some results on finite projective planes”, Journal of Mathematical Sciences, 102:3 (2000), 4032–4038
[17] D.R.Hughes, M.J.Kallaher, “On the Knuth semi-fields”, Internat. J. Math. $\$ Math. Sci., 3:1 (1980), 29–45
[18] O.V.Kravtsova, “Semifield planes admitting the quaternion group $Q_8$”, Algebra and Logic, 59:1 (2020), 71–81