Elasto-plastic twisting of a two-layer rod weakened by holes
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 591-597.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the elasto-plastic twisting of a multiply-connected two-layer prismatic rod under the influence of a couple of forces with a given moment. It is assumed that the rod consists of two layers. Either layer has its own elastic properties, but the plastic characteristics of both layers are the same. The contact boundary of the layers is located alongside Axis ох. The lateral boundary of the rod is free from stresses; at the interface, continuous are movements and stresses. Stress components at a point are calculated with the help of contour integrals obtained from the conservation laws, calculated on the lateral boundary and the boundaries of the holes. At those points of the rod where yield stress is achieved — plastic state is present, at the rest of them — elastic. This allows building the boundary between the plastic and elastic areas.
Keywords: multi-layer materials, conservation laws.
Mots-clés : elastic-plastic torsion
@article{JSFU_2023_16_5_a4,
     author = {Sergei I. Senashov and Irina L. Savostyanova and Olga N. Cherepanova},
     title = {Elasto-plastic twisting of a two-layer rod weakened by holes},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {591--597},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a4/}
}
TY  - JOUR
AU  - Sergei I. Senashov
AU  - Irina L. Savostyanova
AU  - Olga N. Cherepanova
TI  - Elasto-plastic twisting of a two-layer rod weakened by holes
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 591
EP  - 597
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a4/
LA  - en
ID  - JSFU_2023_16_5_a4
ER  - 
%0 Journal Article
%A Sergei I. Senashov
%A Irina L. Savostyanova
%A Olga N. Cherepanova
%T Elasto-plastic twisting of a two-layer rod weakened by holes
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 591-597
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a4/
%G en
%F JSFU_2023_16_5_a4
Sergei I. Senashov; Irina L. Savostyanova; Olga N. Cherepanova. Elasto-plastic twisting of a two-layer rod weakened by holes. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 5, pp. 591-597. http://geodesic.mathdoc.fr/item/JSFU_2023_16_5_a4/

[1] B.D.Annin, V.O.Bytev, S.I.Senashov, Group properties of elasticity and plasticity equations, Nauka, Novosibirsk, 1983 (in Russian) | MR

[2] L.V.Ovsyannikov, Group analysis of differential equations, Nauka, Moscow, 1978 (in Russian) | MR | Zbl

[3] S.I.Senashov, “On the laws of conservation of plasticity equations”, Reports of the USSR Academy of Sciences, 320 (1991), 606–608 (in Russian) | MR | Zbl

[4] S.I.Senashov, “Conservation laws and the exact solution of the Cauchy problem for plasticity equations”, Dokl. Math., 40 (1995), 658–659 | MR | Zbl

[5] P.P.Kiryakov, S.I.Senashov, A.I.Yakhno, Application of symmetry and conservation laws to the solution of differential equations, Nauka Publ, Novosibirsk, 2001 (in Russian) | MR

[6] S.I.Senashov, A.M.Vinogradov, “Symmetries and conservation laws of 2-dimensional ideal plasticity”, Proc. Edinburg Math. Soc., 3:2 (1988), 415–439 | DOI | MR | Zbl

[7] S.I.Senashov, A.N.Yakchno, “Reproduction of solutions for bidimensional ideal plasticity”, Journal of Non-Linear Mechanics, 42 (2007), 500–503 | DOI | MR | Zbl

[8] S.I.Senashov, A.N.Yakchno, “Deformation of characteristic curves of the plane ideal plasticity equations by point symmetries”, Nonlinear analysis, 71 (2009), 1274–1284 | DOI | MR

[9] S.I.Senashov, A.N.Yakchno, “Conservation Laws, Hodograph Transformation and Boundary Value Problems of Plane Plasticity”, SIGMA, 8 (2012), 071, 16 pp. | DOI | MR | Zbl

[10] S.I.Senashov, A.N.Yakchno, “Some symmetry group aspects of a perfect plane plasticity system”, J. Phys. A. Math. Theor., 46 (2013), 355202 | DOI | MR | Zbl

[11] S.I.Senashov, A.N.Yakchno, “Conservation Laws of Three-Dimensional Perfect Plasticity Equations under von Mises Yield Criterion”, Abstract and Applied Analysis Volume, 2013 (2013) | DOI | MR

[12] O.V.Gomonova, S.I.Senashov, “Determination of elastic and plastic deformation regions in the problem of uniaxial stretching of a plate weakened by holes”, J. Appl. Mech. Tech. Phy., 62:1 (2021), 157–163 | DOI | MR | Zbl

[13] S.I.Senashov, E.V.Filyushina, “Conservation laws of equations of the plane theory of elasticity”, Vestnik Sib. GAU, 53:1 (2014), 79–81 (in Russian)

[14] S.I.Senashov, I.L.Savostyanova, “On elastic torsion around three axes”, Siberian Journal of Industrial Mathematics, 24:1 (2021), 120–125 | DOI | MR | Zbl

[15] S.I.Senashov, O.V.Gomonova, “Construction of Elastoplastic Boundary in Problem of Tension of a Plate Weakened by Holes”, Intern. J. Non-Lin. Mech., 108 (2019), 7–10 (in Russian) | DOI

[16] O.V.Gomonova, S.I.Senashov, O.N.Cherepanova, “Group analysis of the equations of ideal plasticity”, Journal of Applied Mechanics and Technical Physics, 62:5 (2021), 882–889 | DOI | MR | Zbl

[17] S.I.Senashov, A.V.Kondrin, O.N.Cherepanova, “On Elastoplastic Torsion of a Rod with Multiply Connected Cross-Section”, J. Sib. Fed. Univ. Math. Phys., 7:1 (2015), 343–351 | DOI

[18] S.I.Senashov, O.N.Cherepanova, A.V.Kondrin, “Elastoplastic Bending of Beam”, J. Sib. Fed. Univ. Math. Phys., 7:2 (2014), 203–208