Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_4_a6, author = {Isroil A. Ikromov and Akbar R. Safarov and Akmal T. Absalamov}, title = {On the convergence exponent of the special integral of the tarry problem for a quadratic polynomial}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {488--497}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a6/} }
TY - JOUR AU - Isroil A. Ikromov AU - Akbar R. Safarov AU - Akmal T. Absalamov TI - On the convergence exponent of the special integral of the tarry problem for a quadratic polynomial JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 488 EP - 497 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a6/ LA - en ID - JSFU_2023_16_4_a6 ER -
%0 Journal Article %A Isroil A. Ikromov %A Akbar R. Safarov %A Akmal T. Absalamov %T On the convergence exponent of the special integral of the tarry problem for a quadratic polynomial %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 488-497 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a6/ %G en %F JSFU_2023_16_4_a6
Isroil A. Ikromov; Akbar R. Safarov; Akmal T. Absalamov. On the convergence exponent of the special integral of the tarry problem for a quadratic polynomial. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 488-497. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a6/
[1] E.M.Stein, Harmonic Analysis: real-valued methods, orthogonality and Oscillatory Integrals, Princeton, 1993 | MR
[2] G.Makenhaupt, Bounds in Lebesgue Spaces of Oscillatory Integral Operators, Habilitationsschift zur Erlangung der Lehrbefugnis im Fach Matematik der Gesamthochschule, Siegen, 1996
[3] J.-G.Bak, S.Lee, “Restriction of the Fourier transform to a quadratic surface in $\mathbb{R}^{n}$”, Mathematische Zeitschrift, 247 (2004), 409–422 | DOI | MR | Zbl
[4] V.V.Lebedev, “On the Fourier transform of the characteristic functions of domains with $C^{1}$ boundary”, Functional Analysis and Its Applications, 47:1 (2013), 27–37 | DOI | MR | Zbl
[5] V.V.Lebedev, Superposition operators in some spaces of the harmonic analyzer the translator, The dissertation on competition of a scientific degree of physical and mathematical sciences, M., 2013
[6] G.I.Arkhipov, A.A.Karatsuba, V.N.Chubarikov, Theory of multiple trigonometric sums, Nauka, M., 1987 (in Russian) | MR | Zbl
[7] L.G.Arkhipova, V.N.Chubarikov, “On the exponents of the convergence of singular integrals and singular series of a multivariate problem”, Chebyshevskiy sbornik, 20:4 (2019), 46–57 (in Russian) | MR | Zbl
[8] M.A.Chahkiev, “Estimation of the convergence index of a singular integral Terry problems for a homogeneous polynomial degree n of two variables”, LXI International Scientific Readings (in memory of A.N.Kolmogorov), International Scientific and Practical Conference, 2019, 18–21 (in Russian)
[9] I.Sh.Jabbarov, “Exponent of a special integral in the two-dimensional Tarry problem with homogeneous of degree 2”, Mathematical Notes, 105:3 (2019), 359–365 | DOI | MR
[10] Hua Loo-keng, “On the number of solutions of Tarry's problem”, Acta Sci. Sinica, 1:1 (1952), 1–76 | MR
[11] I.M.Vinogradov, Method trigonometric sums in number theory, Nauka, M., 1980 (in Russian) | MR | Zbl
[12] I.A.Ikromov, “On the convergence exponent of trigonometric integrals”, Proceedings MIRAN, 218, 1997, 179–189 | MR | Zbl
[13] A.Safarov, “On the $L^p$-bound for trigonometric integrals”, Analysis mathematica, 45 (2019), 153–176 | DOI | MR | Zbl
[14] A.Safarov, “About summation of oscillatory integrals with homogeneous polynomial of third degree”, Uzbek Mathematical journal, 2015, no. 4, 108–117
[15] A.Safarov, “On a problem of restriction of Fourier transform on a hypersurface”, Russian Mathematics, 63:4 (2019), 57–63 | DOI | MR | Zbl