Almost inner derivations of some Leibniz algebras
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 457-474

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to almost inner derivations of thin and solvable Leibniz algebras. Namely, we consider a thin Lie algebra, solvable Lie algebra with nilradical natural graded filifform Lie algebra, natural graded thin Leibniz algebra, thin non-Lie Leibniz algebra and solvable Leibniz algebra with nilradical nul-filiform algebra. We prove that any almost inner derivations of all these algebras are inner derivations.
Keywords: Lie algebra, Leibniz algebra, thin Lie algebra, thin Leibniz algebra, derivation, inner derivation, almost inner derivation.
Mots-clés : solvable algebra, nilradical
@article{JSFU_2023_16_4_a4,
     author = {Tuuelbay K. Kurbanbaev},
     title = {Almost inner derivations of some {Leibniz} algebras},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {457--474},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a4/}
}
TY  - JOUR
AU  - Tuuelbay K. Kurbanbaev
TI  - Almost inner derivations of some Leibniz algebras
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 457
EP  - 474
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a4/
LA  - en
ID  - JSFU_2023_16_4_a4
ER  - 
%0 Journal Article
%A Tuuelbay K. Kurbanbaev
%T Almost inner derivations of some Leibniz algebras
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 457-474
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a4/
%G en
%F JSFU_2023_16_4_a4
Tuuelbay K. Kurbanbaev. Almost inner derivations of some Leibniz algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 457-474. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a4/