Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model under random censoring on the right
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 431-440.

Voir la notice de l'article provenant de la source Math-Net.Ru

The local asymptotic normality property of the likelihood ratio statistic in the competing risk model that corresponds to inhomogeneous and randomly right-censored observations is proved in the paper.
Keywords: local asymptotic normality, likelihood ratio statistic, competing risk model, random censoring, asymptotic representation.
@article{JSFU_2023_16_4_a2,
     author = {Nargiza Nurmuhamedova},
     title = {Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model under random censoring on the right},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {431--440},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a2/}
}
TY  - JOUR
AU  - Nargiza Nurmuhamedova
TI  - Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model under random censoring on the right
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 431
EP  - 440
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a2/
LA  - en
ID  - JSFU_2023_16_4_a2
ER  - 
%0 Journal Article
%A Nargiza Nurmuhamedova
%T Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model under random censoring on the right
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 431-440
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a2/
%G en
%F JSFU_2023_16_4_a2
Nargiza Nurmuhamedova. Local asymptotic normality of statistical experiments in an inhomogeneous competing risks model under random censoring on the right. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 431-440. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a2/

[1] I.Ibragimov, R.Khas'minskii, Statistical Estimation: Asymptotic Theory, Springer–Verlag, New York, 1981 | MR | Zbl

[2] L.Cam, G.Yang, Asymptotics in Statistics: some basic concepts, Springer-Verlag, New York, 2000 | MR | Zbl

[3] V.Voinov, M.Nikulin, N.Balakrishnan, Chi-squared goodness of fit tests with application, Elsevier, USA, 2013

[4] A.W. van der Vaart, Asymptotic Statistics, Cambridge University Press, USA, 1998 | MR | Zbl

[5] A.A.Abdushukurov, L.V.Kim, “Lower Cramer-Rao and Bhattacharyya bounds for randomly censored observations”, Journal of Soviet Mathematics, 38:5 (1987), 2171–2185 | DOI | Zbl

[6] A.Abdushukurov, N.Nurmuhamedova, “Locally asymptotically normality of the family of distributions by incomplete observations”, Journal of Siberian Federal University. Mathematics Physics, 7 (2014), 141–154

[7] A.A.Abdushukurov, N.S.Nurmukhamedova, “Local Asymptotic Normality of Statistical Experiments in an Inhomogeneous Competing Risks Model”, Journal of Siberian Federal University. Mathematics and Physics, 15:5 (2022), 645–650 | DOI | MR

[8] A.A.Abdushukurov, N.S.Nurmukhamedova, “Asymptotic Properties of Bayesian-Type Estimates in the Competing Risk Model under Random Censoring”, Journal of Mathematical Sciences (United States), 42:2 (2020), 257–268 | MR