Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_4_a11, author = {Quang Khanh Phan}, title = {Series of hypergeometric type and discriminants}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {540--548}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a11/} }
TY - JOUR AU - Quang Khanh Phan TI - Series of hypergeometric type and discriminants JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 540 EP - 548 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a11/ LA - en ID - JSFU_2023_16_4_a11 ER -
Quang Khanh Phan. Series of hypergeometric type and discriminants. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 4, pp. 540-548. http://geodesic.mathdoc.fr/item/JSFU_2023_16_4_a11/
[1] I.A.Antipova, A.K.Tsikh, “The discriminant locus of a system of n Laurent polynomials in n variables”, Izv. Math., 76:5 (2012), 881–906 | DOI | MR | Zbl
[2] K.Aomoto et al., Theory of Hypergeometric Functions, Springer Monographs in Mathematics, Springer, Japan, 2011 | DOI | MR | Zbl
[3] P.Appell, “On hypergeometric functions of two variables”, Resal J., 8:3 (1882), 173–216
[4] W.N.Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, 32, 1964 | MR
[5] H.Bateman, A.Erdelyi, Higher transcendental functions, v. 1, McGraw-Hill, New York, 1953
[6] A.N.Cherepanskiy, A.K.Tsikh, “Convergence of two-dimensional hypergeometric series for algebraic functions”, Integral Transforms and Special Functions, 31:10 (2020), 838–855 | DOI | MR | Zbl
[7] I.M Gelfand, M.I.Graev, V.S.Retakh, “General hypergeometric systems of equations and series of hypergeometric type”, Uspekhi Mat. Nauk, 47:4 (1992), 3–82 (in Russian) | MR | Zbl
[8] J.Horn, “Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veräderlichen”, Mathematische Annalen, 34 (1889), 544–600 | DOI | MR
[9] M.M.Kapranov, “A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290 (1991), 277–285 | DOI | MR | Zbl
[10] V.R.Kulikov, V.A.Stepanenko, “On solutions and Waring's formulas for systems of n algebraic equations for n unknowns”, St. Petersburg Mathematical Journal, 26:5 (2015), 839–848 | DOI | MR | Zbl
[11] G.Lauricella, “Sulle funzioni ipergeometriche a piu variabili”, Rend. Circ. Mat. Palermo, 7, 1893, 111–158 (Italian) | DOI
[12] M.Passare, A.K.Tsikh, Amoebas: their spines and their contours, Contemporary Mathematics, 377, eds. G. L. Litvinov, V. P. Maslov, AMS, 2005 | MR | Zbl
[13] T.M.Sadykov, A.K.Tsikh, Hypergeometric and algebraic functions of several variables, Nauka, M., 2014 (in Russian)
[14] G.A.Sarkissian, V.P.Spiridonov, “Rational hypergeometric identities”, Funct. Anal. Appl., 55:3 (2021), 250–255 | DOI | MR | Zbl
[15] M.Sato, T.Shintani, “Theory of prehomogeneous vector spaces (algebraic part) – the English translation of Sato's lecture from Shintani's note”, Nagoya Mathematical Journal, 120 (1990), 1–34 | DOI | MR | Zbl
[16] B.V.Shabat, Introduction to Complex Analysis, Translations of mathematical monographs, American Math. Society, 1992 | DOI | MR | Zbl