MD investigations of of heat flow throw interfaces in 1D systems
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 385-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

Molecular dynamic calculations (MD) of heterogeneous 1D periodical systems are presented. It is proposed the new technique of direct calculations of thermal conductivity, where there is only one thermostat in one piece of unit cell as well as another piece where artificial friction forces act on atoms. With the help of this scheme, calculations of 1D heterogeneous systems having regions with atoms of different atomic masses are presented. It is shown that the difference in atomic masses in adjacent regions of the systems leads to a significant temperature jump at interfaces between these regions. This temperature jump exists independently of the mass ratio on both sides of the interface.The reasons for these jumps are discussed. It is also shown that, by changing the alternation of regions with different masses of atoms, it is possible to reduce the total thermal conductivity of the system by several times. On the base of these results, we can hope that for three-dimensional structures also, the thermal conductivity can be significantly reduced.
Keywords: molecular dynamic, thermal conductivity, temperature jump.
Mots-clés : interface
@article{JSFU_2023_16_3_a9,
     author = {Alexander S. Fedorov and Maxim A. Visotin and Oleg A. Sosedkin and Egor V. Eremkin},
     title = {MD investigations of of heat flow throw interfaces in {1D} systems},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {385--396},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a9/}
}
TY  - JOUR
AU  - Alexander S. Fedorov
AU  - Maxim A. Visotin
AU  - Oleg A. Sosedkin
AU  - Egor V. Eremkin
TI  - MD investigations of of heat flow throw interfaces in 1D systems
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 385
EP  - 396
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a9/
LA  - en
ID  - JSFU_2023_16_3_a9
ER  - 
%0 Journal Article
%A Alexander S. Fedorov
%A Maxim A. Visotin
%A Oleg A. Sosedkin
%A Egor V. Eremkin
%T MD investigations of of heat flow throw interfaces in 1D systems
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 385-396
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a9/
%G en
%F JSFU_2023_16_3_a9
Alexander S. Fedorov; Maxim A. Visotin; Oleg A. Sosedkin; Egor V. Eremkin. MD investigations of of heat flow throw interfaces in 1D systems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 385-396. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a9/

[1] D.M.-T.Kuo, Y.-c.Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Physical Review B, 81:20 (2010), 205321 | DOI

[2] Z.H.Zhang, Y.S.Gui, L.Fu, X.L.Fan, J.W.Cao, D.S.Xue, P.P.Freitas, D.Houssameddine, S.Hemour, K.Wu, C.-M.Hu, “Seebeck Rectification Enabled by Intrinsic Thermoelectrical Coupling in Magnetic Tunneling Junctions”, Physical Review Letters, 109:3 (2012), 37206 | DOI

[3] A.F.Ioffe, Semiconductor thermoelements and thermoelectric cooling, Infosearch Limited, London, 1957

[4] R.M.Costescu, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates”, Science, 303:5660 (2004), 989–990 | DOI

[5] Y.S.Ju, M.T.Hung, M.J.Carey, M.C.Cyrille, J.R.Childress, “Nanoscale heat conduction across tunnel junctions”, Applied Physics Letters, 86 (2005), 1–3 | DOI

[6] C.Chiritescu, D.G.Cahill, N.Nguyen, D.Johnson, A.Bodapati, P.Keblinski, P.Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals”, Science (New York, N.Y.), 315:5810 (2007), 351–353 | DOI

[7] M.Terraneo, M.Peyrard, G.Casati, “Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier”, Physical Review Letters, 88:9 (2002), 943021–943024 | DOI

[8] B.Li, L.Wang, G.Casati, “Thermal diode: Rectification of heat flux”, Physical Review Letters, 93:18 (2004) | DOI

[9] D.Segal, A.Nitzan, “Spin-boson thermal rectifier”, Physical Review Letters, 94:3 (2005) | DOI

[10] C.W.Chang, D.Okawa, A.Majumdar, A.Zettl, “Solid-state thermal rectifier”, Science (New York, N.Y.), 314:5802 (2006), 1121–1124 | DOI

[11] D.Segal, “Single mode heat rectifier: Controlling energy flow between electronic conductors”, Physical Review Letters, 100:10 (2008) | DOI

[12] A.L.Cottrill, M.S.Strano, “Analysis of Thermal Diodes Enabled by Junctions of Phase Change Materials”, Advanced Energy Materials, 5:23 (2015) | DOI

[13] S.Wang, A.L.Cottrill, Y.Kunai, A.R.Toland, P.Liu, W.-J.Wang, M.S.Strano, “Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications”, Physical chemistry chemical physics: PCCP, 19 (2017), 13172–13181 | DOI

[14] L.Wang, B.Li, “Thermal logic gates: Computation with phonons”, Physical Review Letters, 99:1 (2007) | DOI

[15] P.Ben-Abdallah, S.A.Biehs, “Near-field thermal transistor”, Physical Review Letter, 112:4 (2014) | DOI

[16] K.Joulain, J.Drevillon, Y.Ezzahri, J.Ordonez-Miranda, “Quantum Thermal Transistor”, Physical Review Letters, 116:20 (2016) | DOI

[17] N.Li, J.Ren, L.Wang, G.Zhang, P.Hänggi, B.Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond”, Reviews of Modern Physics, 84:3 (2012), 1045–1066 | DOI

[18] S.Narayana, Y.Sato, “Heat flux manipulation with engineered thermal materials”, Physical Review Letters, 108:21 (2012) | DOI

[19] M Maldovan, “Sound and heat revolutions in phononics”, Natur, 503:7475 (2013), 209–217 | DOI

[20] K.Kadau, T.C.Germann, P.S.Lomdahl, “Large-scale molecular-dynamics simulation of 19 billion particles”, International Journal of Modern Physics, 15:1 (2004), 193–201 | DOI

[21] W.A.Harrison, Solid State Theory, Dover Books on Physics, Dover Publications, 2012 | MR

[22] Y.Chen, J.R.Lukes, D.Li, J.Yang, Y.Wu, “Thermal expansion and impurity effects on lattice thermal conductivity of solid argon”, The Journal of Chemical Physics, 120:8 (2004), 3841–3846 | DOI

[23] L.Verlet, “Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules”, Physical Review, 159:1 (1967), 98–103 | DOI

[24] M.S.Green, “Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids”, The Journal of Chemical Physics, 22:3 (1954), 398–413 | DOI | MR

[25] R.Kubo, “Statistical'Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems”, Journal of the Physical Society of Japan, 12:6 (1957), 570–586 | DOI | MR

[26] A.J.McGaughey, M.Kaviany, “Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon”, International Journal of Heat and Mass Transfer, 47:8-9 (2004), 1783–1798 | DOI | Zbl