Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_3_a9, author = {Alexander S. Fedorov and Maxim A. Visotin and Oleg A. Sosedkin and Egor V. Eremkin}, title = {MD investigations of of heat flow throw interfaces in {1D} systems}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {385--396}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a9/} }
TY - JOUR AU - Alexander S. Fedorov AU - Maxim A. Visotin AU - Oleg A. Sosedkin AU - Egor V. Eremkin TI - MD investigations of of heat flow throw interfaces in 1D systems JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 385 EP - 396 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a9/ LA - en ID - JSFU_2023_16_3_a9 ER -
%0 Journal Article %A Alexander S. Fedorov %A Maxim A. Visotin %A Oleg A. Sosedkin %A Egor V. Eremkin %T MD investigations of of heat flow throw interfaces in 1D systems %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 385-396 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a9/ %G en %F JSFU_2023_16_3_a9
Alexander S. Fedorov; Maxim A. Visotin; Oleg A. Sosedkin; Egor V. Eremkin. MD investigations of of heat flow throw interfaces in 1D systems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 385-396. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a9/
[1] D.M.-T.Kuo, Y.-c.Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Physical Review B, 81:20 (2010), 205321 | DOI
[2] Z.H.Zhang, Y.S.Gui, L.Fu, X.L.Fan, J.W.Cao, D.S.Xue, P.P.Freitas, D.Houssameddine, S.Hemour, K.Wu, C.-M.Hu, “Seebeck Rectification Enabled by Intrinsic Thermoelectrical Coupling in Magnetic Tunneling Junctions”, Physical Review Letters, 109:3 (2012), 37206 | DOI
[3] A.F.Ioffe, Semiconductor thermoelements and thermoelectric cooling, Infosearch Limited, London, 1957
[4] R.M.Costescu, “Ultra-Low Thermal Conductivity in W/Al2O3 Nanolaminates”, Science, 303:5660 (2004), 989–990 | DOI
[5] Y.S.Ju, M.T.Hung, M.J.Carey, M.C.Cyrille, J.R.Childress, “Nanoscale heat conduction across tunnel junctions”, Applied Physics Letters, 86 (2005), 1–3 | DOI
[6] C.Chiritescu, D.G.Cahill, N.Nguyen, D.Johnson, A.Bodapati, P.Keblinski, P.Zschack, “Ultralow thermal conductivity in disordered, layered WSe2 crystals”, Science (New York, N.Y.), 315:5810 (2007), 351–353 | DOI
[7] M.Terraneo, M.Peyrard, G.Casati, “Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier”, Physical Review Letters, 88:9 (2002), 943021–943024 | DOI
[8] B.Li, L.Wang, G.Casati, “Thermal diode: Rectification of heat flux”, Physical Review Letters, 93:18 (2004) | DOI
[9] D.Segal, A.Nitzan, “Spin-boson thermal rectifier”, Physical Review Letters, 94:3 (2005) | DOI
[10] C.W.Chang, D.Okawa, A.Majumdar, A.Zettl, “Solid-state thermal rectifier”, Science (New York, N.Y.), 314:5802 (2006), 1121–1124 | DOI
[11] D.Segal, “Single mode heat rectifier: Controlling energy flow between electronic conductors”, Physical Review Letters, 100:10 (2008) | DOI
[12] A.L.Cottrill, M.S.Strano, “Analysis of Thermal Diodes Enabled by Junctions of Phase Change Materials”, Advanced Energy Materials, 5:23 (2015) | DOI
[13] S.Wang, A.L.Cottrill, Y.Kunai, A.R.Toland, P.Liu, W.-J.Wang, M.S.Strano, “Microscale solid-state thermal diodes enabling ambient temperature thermal circuits for energy applications”, Physical chemistry chemical physics: PCCP, 19 (2017), 13172–13181 | DOI
[14] L.Wang, B.Li, “Thermal logic gates: Computation with phonons”, Physical Review Letters, 99:1 (2007) | DOI
[15] P.Ben-Abdallah, S.A.Biehs, “Near-field thermal transistor”, Physical Review Letter, 112:4 (2014) | DOI
[16] K.Joulain, J.Drevillon, Y.Ezzahri, J.Ordonez-Miranda, “Quantum Thermal Transistor”, Physical Review Letters, 116:20 (2016) | DOI
[17] N.Li, J.Ren, L.Wang, G.Zhang, P.Hänggi, B.Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond”, Reviews of Modern Physics, 84:3 (2012), 1045–1066 | DOI
[18] S.Narayana, Y.Sato, “Heat flux manipulation with engineered thermal materials”, Physical Review Letters, 108:21 (2012) | DOI
[19] M Maldovan, “Sound and heat revolutions in phononics”, Natur, 503:7475 (2013), 209–217 | DOI
[20] K.Kadau, T.C.Germann, P.S.Lomdahl, “Large-scale molecular-dynamics simulation of 19 billion particles”, International Journal of Modern Physics, 15:1 (2004), 193–201 | DOI
[21] W.A.Harrison, Solid State Theory, Dover Books on Physics, Dover Publications, 2012 | MR
[22] Y.Chen, J.R.Lukes, D.Li, J.Yang, Y.Wu, “Thermal expansion and impurity effects on lattice thermal conductivity of solid argon”, The Journal of Chemical Physics, 120:8 (2004), 3841–3846 | DOI
[23] L.Verlet, “Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules”, Physical Review, 159:1 (1967), 98–103 | DOI
[24] M.S.Green, “Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids”, The Journal of Chemical Physics, 22:3 (1954), 398–413 | DOI | MR
[25] R.Kubo, “Statistical'Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems”, Journal of the Physical Society of Japan, 12:6 (1957), 570–586 | DOI | MR
[26] A.J.McGaughey, M.Kaviany, “Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon”, International Journal of Heat and Mass Transfer, 47:8-9 (2004), 1783–1798 | DOI | Zbl