Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2023_16_3_a7, author = {Abdelkrim Bencheikh and Lakhdar Chiter}, title = {Boubaker operational matrix method for fractional {Emden--Fowler} problem}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {357--369}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a7/} }
TY - JOUR AU - Abdelkrim Bencheikh AU - Lakhdar Chiter TI - Boubaker operational matrix method for fractional Emden--Fowler problem JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2023 SP - 357 EP - 369 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a7/ LA - en ID - JSFU_2023_16_3_a7 ER -
%0 Journal Article %A Abdelkrim Bencheikh %A Lakhdar Chiter %T Boubaker operational matrix method for fractional Emden--Fowler problem %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2023 %P 357-369 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a7/ %G en %F JSFU_2023_16_3_a7
Abdelkrim Bencheikh; Lakhdar Chiter. Boubaker operational matrix method for fractional Emden--Fowler problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 357-369. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a7/
[1] S.Abbas, Gh.Azam, E.Ali, “Numerical study of singular fractional Lane-Emden type equations arising in astrophysics”, J. Astrophys. Astr., 40:27 (2019), 2–12 | DOI
[2] A.Bencheikh, L.Chiter, H.Abbassi, “Bernstein polynomials method for numerical solutions of integro-differential form of the singular Emden-Fowler initial value problems”, J. Math. Computer Sci., 17:1 (2017), 66–75 | DOI | Zbl
[3] K.Boubaker, “On modified Boubaker polynomials: some differential and analytical properties of the new polynomials issued from an attempt for solving Bi-varied heat equation”, Trends Appl. Sci. Res., 2:6 (2007), 540–544 | DOI | MR
[4] K.Boubaker, “The Boubaker polynomials, a new function class for solving Bi-varied second order differential equations”, Far East J. Appl. Math., 31:3 (2008), 299–320 | MR | Zbl
[5] A.Bolandtalat, E.Babolian, H.Jafari, “Numerical solutions of multi-order fractional differential equations by Boubaker Polynomials”, Open Phys., 14:1 (2016), 226–230 | DOI
[6] B.Caruntu, C.Bota, L.Marioara, M.Pasca, “Polynomial Least Squares Method for Fractional Lane-Emden Equations”, Symmetry, 11:4 (2019), 479 | DOI | Zbl
[7] S.Chandrasekhar, An introduction to the study of stellar structure, Dover Publications, Inc, New York, 1967 | MR
[8] M.S.H.Chowdhury, I.Hashim, “Solutions of Emden-Fowler equations by homotopy-perturbation method”, Nonlinear Anal. Real World Appl., 10:1 (2009), 104–115 | DOI | MR | Zbl
[9] S. Das, Functional Fractional Calculus, Springer, 2011 | MR | Zbl
[10] K.Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, 2010 | MR | Zbl
[11] S.Davaeifar, J.Rashidinia, “Boubaker polynomials collocation approach for solving systems of nonlinear Volterra-Fredholm integral equations”, Journal of Taibah University for Science, 11:6 (2017), 1182–1199 | DOI
[12] H.Huan Wang, Y.Hu, “Solutions of fractional Emden-Fowler equations by homotopy analysis method”, Journal of Advances in Mathematics, 13:1 (2017), 1–6 | DOI
[13] A.K.Nasab, Z.P.Atabakan, A.I.Ismail, W.I.Rabha, “A numerical method for solving singular fractional Lane-Emden type equations”, Journal of King Saud University-Science, 30:1 (2018), 120–130 | DOI
[14] A.A.Kilbas, H.M.Srivastava, J.J.Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[15] E.Kreyszig, Introductory Functional Analysis with Applications, Wiley, New York, 1987 | MR
[16] H.Labiadh, K.Boubaker, “A Sturm-Liouville shaped characteristic differential equation as a guide to establish a quasi-polynomial expression to the Boubaker polynomials”, Diff. Eq. Cont. Proc., 2:2 (2007), 117–133 | MR | Zbl
[17] I.Podlubny, Fractional Differential Equations, Academic Press, New York, 1999 | MR | Zbl
[18] J.Rebenda, Z.Smarda, “A Numerical Approach for Solving of Fractional Emden-Fowler Type Equations”, AIP Conference Proceedings, 1978:1 (2018), 140006 | DOI
[19] K.Rabiei, Y.Ordokhani, E.Babolian, “The Boubaker polynomials and their application to solve fractional optimal control problems”, Nonlinear Dyn. Nonlinear Dynamics, 88:2 (2017), 1013–1026 | DOI | MR | Zbl
[20] M.I Syam, “Analytical Solution of the Fractional Initial Emden-Fowler Equation Using the Fractional Residual Power Series Method”, Int. J. Appl. Comput. Math., 4:106 (2018), 02–08 | MR
[21] M.I.Syam et al., “An accurate method for solving a singular second-order fractional Emden-Fowler problem”, Advances in Difference Equations, 2018, no. 30, 02–16 | MR
[22] N.T.Shawagfeh, “Analytical approximate solutions for nonlinear fractional differential equations”, Appl. Math. Comput., 131:2-3 (2002), 517–529 | MR | Zbl
[23] P.K.Sahu, B.Mallick, “Approximate Solution of Fractional Order Lane-Emden Type Differential Equation by Orthonormal Bernoulli's Polynomials”, Int. J. Appl. Comput. Math., 5:3 (2019), 89 | DOI | MR | Zbl
[24] X.F.Shang, P.Wu, X.P.Shao, “An efficient method for solving Emden-Fowler equations”, J. Franklin Inst., 346:9 (2009), 889–897 | DOI | MR | Zbl
[25] N.Tripathi, “Shifted Legendre Operational Matrix for Solving Fractional Order Lane-Emden Equation”, National Academy Science Letters, 42:2 (2019), 139–145 | DOI | MR
[26] A.M.Wazwaz, “Adomian decomposition method for a reliable treatment of the Emden-Fowler equation”, Appl. Math. Comput., 161:2 (2005), 543–560 | MR | Zbl
[27] A.M.Wazwaz, “Analytical solution for the time-dependent Emden-Fowler type of equations by Adomian decomposition method”, Appl. Math. Comput., 166:3 (2005), 638–651 | MR | Zbl
[28] S.A.Yousefi, “Legendre scaling function for solving generalized Emden-Fowler equations”, J. Inf. Syst. Sci., 3:2 (2007), 243–250 | MR | Zbl