Boubaker operational matrix method for fractional Emden--Fowler problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 357-369.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the singular Emden-Fowler equation of fractional order is introduced and a computational method is proposed for its numerical solution. For the approximation of the solutions we have used Boubaker polynomials and defined the formulation for its fractional derivative operational matrix. However, the use of Boubaker polynomials is most recent, and has not been discussed in the literature, since most of application areas of these polynomials require orthogonal polynomials, and here we have introduced it for the first time. The operational matrixof the Caputo fractional derivative tool converts the Emden–Fowler equation to a system of algebraic equations whose solutions are easy to compute. Numerical examples are examined to prove the validity and the effectiveness of the proposed method.
Keywords: Boubaker polynomials, operational matrix of fractional derivatives, collocation method, fractional Emden–Fowler type equations.
@article{JSFU_2023_16_3_a7,
     author = {Abdelkrim Bencheikh and Lakhdar Chiter},
     title = {Boubaker operational matrix method for fractional {Emden--Fowler} problem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {357--369},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a7/}
}
TY  - JOUR
AU  - Abdelkrim Bencheikh
AU  - Lakhdar Chiter
TI  - Boubaker operational matrix method for fractional Emden--Fowler problem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 357
EP  - 369
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a7/
LA  - en
ID  - JSFU_2023_16_3_a7
ER  - 
%0 Journal Article
%A Abdelkrim Bencheikh
%A Lakhdar Chiter
%T Boubaker operational matrix method for fractional Emden--Fowler problem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 357-369
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a7/
%G en
%F JSFU_2023_16_3_a7
Abdelkrim Bencheikh; Lakhdar Chiter. Boubaker operational matrix method for fractional Emden--Fowler problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 357-369. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a7/

[1] S.Abbas, Gh.Azam, E.Ali, “Numerical study of singular fractional Lane-Emden type equations arising in astrophysics”, J. Astrophys. Astr., 40:27 (2019), 2–12 | DOI

[2] A.Bencheikh, L.Chiter, H.Abbassi, “Bernstein polynomials method for numerical solutions of integro-differential form of the singular Emden-Fowler initial value problems”, J. Math. Computer Sci., 17:1 (2017), 66–75 | DOI | Zbl

[3] K.Boubaker, “On modified Boubaker polynomials: some differential and analytical properties of the new polynomials issued from an attempt for solving Bi-varied heat equation”, Trends Appl. Sci. Res., 2:6 (2007), 540–544 | DOI | MR

[4] K.Boubaker, “The Boubaker polynomials, a new function class for solving Bi-varied second order differential equations”, Far East J. Appl. Math., 31:3 (2008), 299–320 | MR | Zbl

[5] A.Bolandtalat, E.Babolian, H.Jafari, “Numerical solutions of multi-order fractional differential equations by Boubaker Polynomials”, Open Phys., 14:1 (2016), 226–230 | DOI

[6] B.Caruntu, C.Bota, L.Marioara, M.Pasca, “Polynomial Least Squares Method for Fractional Lane-Emden Equations”, Symmetry, 11:4 (2019), 479 | DOI | Zbl

[7] S.Chandrasekhar, An introduction to the study of stellar structure, Dover Publications, Inc, New York, 1967 | MR

[8] M.S.H.Chowdhury, I.Hashim, “Solutions of Emden-Fowler equations by homotopy-perturbation method”, Nonlinear Anal. Real World Appl., 10:1 (2009), 104–115 | DOI | MR | Zbl

[9] S. Das, Functional Fractional Calculus, Springer, 2011 | MR | Zbl

[10] K.Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, 2010 | MR | Zbl

[11] S.Davaeifar, J.Rashidinia, “Boubaker polynomials collocation approach for solving systems of nonlinear Volterra-Fredholm integral equations”, Journal of Taibah University for Science, 11:6 (2017), 1182–1199 | DOI

[12] H.Huan Wang, Y.Hu, “Solutions of fractional Emden-Fowler equations by homotopy analysis method”, Journal of Advances in Mathematics, 13:1 (2017), 1–6 | DOI

[13] A.K.Nasab, Z.P.Atabakan, A.I.Ismail, W.I.Rabha, “A numerical method for solving singular fractional Lane-Emden type equations”, Journal of King Saud University-Science, 30:1 (2018), 120–130 | DOI

[14] A.A.Kilbas, H.M.Srivastava, J.J.Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[15] E.Kreyszig, Introductory Functional Analysis with Applications, Wiley, New York, 1987 | MR

[16] H.Labiadh, K.Boubaker, “A Sturm-Liouville shaped characteristic differential equation as a guide to establish a quasi-polynomial expression to the Boubaker polynomials”, Diff. Eq. Cont. Proc., 2:2 (2007), 117–133 | MR | Zbl

[17] I.Podlubny, Fractional Differential Equations, Academic Press, New York, 1999 | MR | Zbl

[18] J.Rebenda, Z.Smarda, “A Numerical Approach for Solving of Fractional Emden-Fowler Type Equations”, AIP Conference Proceedings, 1978:1 (2018), 140006 | DOI

[19] K.Rabiei, Y.Ordokhani, E.Babolian, “The Boubaker polynomials and their application to solve fractional optimal control problems”, Nonlinear Dyn. Nonlinear Dynamics, 88:2 (2017), 1013–1026 | DOI | MR | Zbl

[20] M.I Syam, “Analytical Solution of the Fractional Initial Emden-Fowler Equation Using the Fractional Residual Power Series Method”, Int. J. Appl. Comput. Math., 4:106 (2018), 02–08 | MR

[21] M.I.Syam et al., “An accurate method for solving a singular second-order fractional Emden-Fowler problem”, Advances in Difference Equations, 2018, no. 30, 02–16 | MR

[22] N.T.Shawagfeh, “Analytical approximate solutions for nonlinear fractional differential equations”, Appl. Math. Comput., 131:2-3 (2002), 517–529 | MR | Zbl

[23] P.K.Sahu, B.Mallick, “Approximate Solution of Fractional Order Lane-Emden Type Differential Equation by Orthonormal Bernoulli's Polynomials”, Int. J. Appl. Comput. Math., 5:3 (2019), 89 | DOI | MR | Zbl

[24] X.F.Shang, P.Wu, X.P.Shao, “An efficient method for solving Emden-Fowler equations”, J. Franklin Inst., 346:9 (2009), 889–897 | DOI | MR | Zbl

[25] N.Tripathi, “Shifted Legendre Operational Matrix for Solving Fractional Order Lane-Emden Equation”, National Academy Science Letters, 42:2 (2019), 139–145 | DOI | MR

[26] A.M.Wazwaz, “Adomian decomposition method for a reliable treatment of the Emden-Fowler equation”, Appl. Math. Comput., 161:2 (2005), 543–560 | MR | Zbl

[27] A.M.Wazwaz, “Analytical solution for the time-dependent Emden-Fowler type of equations by Adomian decomposition method”, Appl. Math. Comput., 166:3 (2005), 638–651 | MR | Zbl

[28] S.A.Yousefi, “Legendre scaling function for solving generalized Emden-Fowler equations”, J. Inf. Syst. Sci., 3:2 (2007), 243–250 | MR | Zbl