Parametrizations of limit positions for the discriminant locus of a trinomial system
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 318-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the discriminant of the reduced system of $ n $ trinomial algebraic equations. We study zero loci of truncations of the discriminant on facets of its Newton polytope. The basis of the study is the properties of the parametrization of the discriminant set of the system and the general combinatorial construction of the tropicalization of algebraic varieties.
Keywords: Newton polytope, truncation of the polynomial, parametrization.
Mots-clés : algebraic equation, discriminant, discriminant set
@article{JSFU_2023_16_3_a3,
     author = {Irina A. Antipova and Ekaterina A. Kleshkova},
     title = {Parametrizations of limit positions for the discriminant locus of a trinomial system},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {318--329},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a3/}
}
TY  - JOUR
AU  - Irina A. Antipova
AU  - Ekaterina A. Kleshkova
TI  - Parametrizations of limit positions for the discriminant locus of a trinomial system
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 318
EP  - 329
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a3/
LA  - en
ID  - JSFU_2023_16_3_a3
ER  - 
%0 Journal Article
%A Irina A. Antipova
%A Ekaterina A. Kleshkova
%T Parametrizations of limit positions for the discriminant locus of a trinomial system
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 318-329
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a3/
%G en
%F JSFU_2023_16_3_a3
Irina A. Antipova; Ekaterina A. Kleshkova. Parametrizations of limit positions for the discriminant locus of a trinomial system. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 318-329. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a3/

[1] I.A.Antipova, A.K.Tsikh, “The discriminant locus of a system of n Laurent polynomials in n variables”, Izv. Math., 76:5 (2012), 881–906 | DOI | MR | Zbl

[2] I.A.Antipova, E.A.Kleshkova, “On facets of the Newton polytope for the discriminant of the polynomial system”, Siberian Electronic Mathematical Reports, 18:2 (2021), 1180–1188 | DOI | MR | Zbl

[3] I.A.Antipova, E.A.Kleshkova, V.R.Kulikov, “Analytic continuation for solutions to the system of trinomial algebraic equations”, Journal of Siberian Federal University. Mathematics $\$ Physics, 13:1 (2020), 114–130 | DOI | MR

[4] F.Ardila, “The Geometry of Matroids”, Notices Amer. Math. Soc., 65:8 (2018), 902–908 | DOI | MR | Zbl

[5] I.M.Gelfand, M.M.Kapranov, A.V.Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhauser, 1994 | MR | Zbl

[6] W.Decker, G.-M.Greuel, G.Pfister, H. Schönemann, Singular 4-1-2 — A computer algebra system for polynomial computations, 2019 http://www.singular.uni-kl.de | MR

[7] A.Dickenstein, E.M.Feichtner, B.Sturmfels, “Tropical discriminants”, J. Amer. Math. Soc., 20 (2007), 1111–1133 | DOI | MR | Zbl

[8] E.N.Mikhalkin, V.A.Stepanenko, A.K.Tsikh, “Geometry of factorization identities for discriminants”, Dokl. Math., 102:1 (2020), 279–282 | DOI | MR | Zbl

[9] E.Mikhalkin, V.Stepanenko, A.Tsikh, “Blow-ups for the Horn-Kapranov parametrization of the classical discriminant”, Partial Differential Equations, Spectral Theory, and Mathematical Physics, The Ari Laptev Anniversary Volume, EMS Series of Congress Reports, 18, eds. P. Exner et al., EMS Publishing House, 2021, 315–329 | DOI | MR

[10] D.Maclagan, B.Sturmfels, Introduction to Tropical Geometry, Graduate Studies in Mathematics, 161, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl