Soft tripled coincidence fixed point theorems in soft fuzzy metric space
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 397-407.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we are going to prove the fixed point theorems (FPT's) for the existence and uniqueness of soft tripled coincidence point for contractive maps in the setting of soft fuzzy metric space (SFMS). We have also given an application to our new results in finding the solution of an integral equation.
Keywords: soft set, soft tripled coincidence point, fixed point.
Mots-clés : contractions
@article{JSFU_2023_16_3_a10,
     author = {Vishal Gupta and Aanchal Gondhi},
     title = {Soft tripled coincidence fixed point theorems in soft fuzzy metric space},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {397--407},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a10/}
}
TY  - JOUR
AU  - Vishal Gupta
AU  - Aanchal Gondhi
TI  - Soft tripled coincidence fixed point theorems in soft fuzzy metric space
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2023
SP  - 397
EP  - 407
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a10/
LA  - en
ID  - JSFU_2023_16_3_a10
ER  - 
%0 Journal Article
%A Vishal Gupta
%A Aanchal Gondhi
%T Soft tripled coincidence fixed point theorems in soft fuzzy metric space
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2023
%P 397-407
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a10/
%G en
%F JSFU_2023_16_3_a10
Vishal Gupta; Aanchal Gondhi. Soft tripled coincidence fixed point theorems in soft fuzzy metric space. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 16 (2023) no. 3, pp. 397-407. http://geodesic.mathdoc.fr/item/JSFU_2023_16_3_a10/

[1] L.A.Zadeh, “Fuzzy Sets”, Fuzzy Sets Information and Control, 8 (1965), 338–353 | DOI | MR | Zbl

[2] O.Kramosil, J.Michalek, “Fuzzy metric and statistical metric spaces”, Kybernetika, 11 (1975), 336–334 | MR

[3] A.George, P.Veeramani, “On some results in fuzzy metric spaces”, Fuzzy Sets and Systems, 64:3 (1994), 395–399 | DOI | MR | Zbl

[4] D.Molodtsov, “Soft set theory-First results”, Computers and Mathematics with Applications, 37:4-5 (1999), 19–31 | DOI | MR | Zbl

[5] P.K.Maji, R.Biswas, A.R.Roy, “Fuzzy Soft Set”, J. Fuzzy Math., 9:3 (2001), 589–602 | MR | Zbl

[6] T.Beaula, C.Gunaseeli, “On fuzzy soft metric spaces”, Malaya Journal of Mathematics, 2:3 (2014), 197–202 | DOI | Zbl

[7] S.Das, S.K.Samanta, “Soft metric”, Ann. Fuzzy Math. Inform., 6:1 (2013), 77–94 | MR | Zbl

[8] S.Das, S.K.Samanta, “Soft real sets, soft real numbers and their properties”, J. Fuzzy Math., 20:3 (2012), 551–576 | MR | Zbl

[9] V.Bernide, M.Borcut, “Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces”, Nonlinear Anal. TMA, 74 (2011), 4889–4897 | DOI | MR

[10] A.Roldan, J.Martinez-Moreno, C.Roldan, “Tripled fixed point theorem in fuzzy metric spaces and applications”, Nonlinear Anal. TMA, 29 (2013) | DOI | MR | Zbl

[11] F.S.Erduran, E.Yigit, R.Alar, A.Gezici, “Soft Fuzzy Metric Spaces”, General Letters in Mathematics, 3:2 (2017), 91–101